Previous |  Up |  Next

Article

Title: Oscillation theorems of comparison type for neutral nonlinear functional differential equations (English)
Author: Grace, S. R.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 45
Issue: 4
Year: 1995
Pages: 609-626
.
Category: math
.
MSC: 34C10
MSC: 34K11
MSC: 34K15
MSC: 34K40
idZBL: Zbl 0860.34038
idMR: MR1354921
DOI: 10.21136/CMJ.1995.128562
.
Date available: 2009-09-24T09:51:05Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/128562
.
Reference: [1] K.E. Foster and R.C. Grimmer: Nonoscillatory solutions of higher order delay differential equations.J. Math. Anal. Appl. 77 (1980), 150–164. MR 0591267, 10.1016/0022-247X(80)90266-8
Reference: [2] S.R. Grace: Oscillation of even order nonlinear functional differential equations with deviating arguments.Funkcialaj Ekvacioj 32 (1989), 265–272. Zbl 0704.34076, MR 1019434
Reference: [3] S.R. Grace, B.S. Lalli and C.C. Yeh: Oscillation theorems for nonlinear second order differential equations with a nonlinear damping term.SIAM J. Math. Anal. 15 (1984), 1082–1093. MR 0762965, 10.1137/0515084
Reference: [4] S.R. Grace and B.S. Lalli: Oscillation theorems for certain neutral differential equations.Czech. Math. J. 38 (1988), 745–753. MR 0962917
Reference: [5] S.R. Grace and B.S. Lalli: Oscillation of nonlinear second order neutral delay differential equations.Radovi Mat. 3 (1987), 77–84. MR 0933634
Reference: [6] M.K. Grammatikopoulos, G. Ladas and A. Meimaridou: Oscillation and asymptotic behavior of higher order neutral differential equations with variable coefficients.Chines Ann. Math., Ser. B 9 (1988), 322–338. MR 0968469
Reference: [7] J. Jaros and T. Kusano: Oscillation theory of higher order linear functional differential equations of neutral type.Hiroshima Math. J. 18 (1988), 509–531. MR 0991245, 10.32917/hmj/1206129616
Reference: [8] J. Jaros and T. Kusano: Sufficient conditions for oscillations in higher linear functional differential equations of neutral type.Japan J. Math. 15 (1989), 501–531. 10.4099/math1924.15.415
Reference: [9] A.G. Kartsatos: Maintence of oscillations under the effect of a periodic forcing term.Amer. Math. Soc. 33 (1972), 377–383. MR 0330622, 10.1090/S0002-9939-1972-0330622-0
Reference: [10] I.T. Kiguradze: On the oscillations of equation $u^{(m)}+a(t)|u|^nu=0$.Mat. Sb. 65 (1964), 172–187. (Russian) Zbl 0135.14302
Reference: [11] K. Kreith: PDE Generalization of Sturm comparison theorem.Memories Amer. Math. Soc. 48 (1984), 31–46. MR 0733263
Reference: [12] M.K. Kwong and J.S.W. Wong: Linearization of second order nonlinear oscillation theorems.Trans. Amer. Math. Soc. 279 (1983), 705–722. MR 0709578, 10.1090/S0002-9947-1983-0709578-6
Reference: [13] G. Ladas and Y.G. Sficas: Oscillation of higher order neutral equations.J. Austral. Math. Soc., Ser. B 27 (1986), 502–511. MR 0836222, 10.1017/S0334270000005105
Reference: [14] W.E. Mahfoud: Remarks on some oscillation theorems for $n^{\text{th}}$ order differential equations with retarded argument.J. Math. Anal. Appl. 62 (1978), 68–80. MR 0481367, 10.1016/0022-247X(78)90219-6
Reference: [15] Ch.G. Philos: A new criterion for the oscillatory and asymptotic behavior of delay differential equations.Bull. Acad. Pol. Sci., Ser. Sci. Mat. XXIX (1981), 367–370. Zbl 0482.34056, MR 0640329
Reference: [16] Ch.G. Philos: On the existence of nonoscillatory solutions tending to zero at $\infty $ for differential equations with positive delays.Arch. Math. 36 (1980), 168–178. MR 0619435, 10.1007/BF01223686
Reference: [17] Ch.G. Philos and Y.G. Sficas: Oscillatory and asymptotic behavior of second and third order retarded differential equations.Czech. Math. J. 24 (1982), 169–182. MR 0654054
Reference: [18] J.S.W. Wong: Second order nonlinear forced oscillations.SIAM J. Math. Anal. 19 (1988), 667–675. Zbl 0655.34023, MR 0937477, 10.1137/0519047
.

Files

Files Size Format View
CzechMathJ_45-1995-4_2.pdf 1.473Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo