Previous |  Up |  Next

Article

Title: On the structure of solution sets of differential equations in Banach spaces (English)
Author: Bugajewska, Daria
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 50
Issue: 4
Year: 2000
Pages: 463-471
.
Category: math
.
MSC: 34G20
idZBL: Zbl 0997.34049
idMR: MR1857301
.
Date available: 2009-09-25T11:46:48Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/128599
.
Reference: [1] AMBROSETTI A.: Un teorema di esistenza per le equazioni differenziali negli spazi di Banach.Rend. Sem. Mat. Univ. Padova 39 (1967), 349-360. Zbl 0174.46001, MR 0222426
Reference: [2] BANAS J.-GOEBEL K.: Measures of Noncompactness in Banach Spaces.Lecture Notes in Pure and Appl. Math. 60, Marcel Dekker, New York-Basel, 1980. Zbl 0441.47056, MR 0591679
Reference: [3] BUGAJEWSKA D.: A note on the global solutions of the Cauchy problem in Banach spaces.Acta Math. Hungar. (To appear). MR 1789046
Reference: [4] BUGAJEWSKA D.: On topological structure of solution sets for delay and functional differential equations.(Submitted). Zbl 1003.34063
Reference: [5] BUGAJEWSKA D.-BUGAJEWSKI. D.: On nonlinear equations in Banach spaces and axiomatic measures of noncompactness.Funct. Differ. Equ. 5 (1998), 57-68. Zbl 1049.45013, MR 1681184
Reference: [6] BUGAJEWSKI D.: Some remarks on Kuratowski's measure of noncompactness in vector spaces with a metric.Comment. Math. Prace Mat. XXXII (1992), 5-9. Zbl 0772.47031, MR 1202752
Reference: [7] CELLINA A.: On the existence of solutions of ordinary differential equations in Banach spaces.Funkcial. Ekvac. 14 (1971), 129-136. Zbl 0271.34071, MR 0304805
Reference: [8] CZARNOWSKI K.-PRUSZKO T.: On the structure of fixed point sets of compact maps in B0 spaces with applications to integral and differential equations in unbounded domain.J. Math. Anal. Appl. 54 (1991), 151-163. MR 1087965
Reference: [9] DRAGONI R.-MACKI J. WT.-NISTRI P.-ZECCA P.: Solution Sets of Differential Equations in Abstract Spaces.Pitman Res. Notes Math. Ser. 342, Longman Sci. Tech., Harlow, 1996. Zbl 0847.34004, MR 1427944
Reference: [10] HARA T.-YONEYAMA T.-SUGIE J.: Continuability of solutions of perturbated differential equations.Nonlinear Anal. 8 (1984), 963-975. MR 0753769
Reference: [11] HARTMAN, PH.: Ordinary Differential Equations.Wiley, New York-London-Sydney, 1964. Zbl 0125.32102, MR 0171038
Reference: [12] JANUSZEWSKI J.: On the existence of continuous solutions of nonlinear integral equations in Banach spaces.Comment. Math. Prace Mat. XXX (1990), 85-92. Zbl 0737.45011, MR 1111787
Reference: [13] KRASNOSELSKII M. A.-KREIN S. G.: K teorii obyknovennych differencialnych uravnienij v Banachovych prostranstwach.Trudy Sem. Funkc. Anal. Voronezh. Univ. 2 (1956), 3-23. (Russian) MR 0086191
Reference: [14] KUBÁČEK Z.: On the structure of fixed point sets of some compact maps in the Frechet space.Math. Bohem. 118 (1993), 343-358. Zbl 0839.47037, MR 1251881
Reference: [15] KUBÁČEK Z.: On the structure of the solution sets of functional differential system on an unbounded interval.(Submitted).
Reference: [16] MORALES P.: Topological properties of the set of global solutions for a class of semilinear evolution equations in Banach spaces.Atti del Convegno celebrativo del 1° centario del Circolo Matematico di Palermo, Rend. Circ. Mat. Palermo (2) Suppl. 8 (1985), 379-397. MR 0881416
Reference: [17] SZUFLA S.: Aronszajn type theorems for diferential and integral equations in Banach spaces.In: Proceedings of the 1st Polish Symposium on Nonlinear Analysis, Wydawnictwo Uniwersytetu Lodzkiego, Lodz, 1997, pp. 113-123.
Reference: [18] ŠEDA V.-KUBÁČEK Z.: On the connectedness of the set of fixed points of a compact operator in the Frechet space $C^m([b\infty), \bold R^n)$.Czechoslovak Math. J. 42 (117) (1992), 577-588. MR 1182189
Reference: [19] WÓJTOWICZ D. (BUGAJEWSKA): On implicit Darboux problem in Banach spaces.Bull. Austral. Math. Soc. 56 (1997), 149-156. MR 1464057
.

Files

Files Size Format View
MathSlov_50-2000-4_7.pdf 625.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo