[1] AZBELEV N. V.vMAKSIMOV V. P.-RAKHMATULLINA L. F.: 
Introduction to the Theory of Functional Differential Equations. Nauka, Moscow, 1991. (Russian) 
MR 1144998 | 
Zbl 0725.34071[2] BERNFELD S. R.-LAKSHMIKANTHAM V.: 
An Introduction to Nonlinear Boundary Value Problems. Academic Press, Inc., New York-London, 1974. 
MR 0445048 | 
Zbl 0286.34018[3] DE COSTER C.: 
Pairs of positive solutions for the one-dimensional p-Laplacian. Nonlinear Anal. 23(5) (1994), 669-681. 
MR 1297285 | 
Zbl 0813.34021[5] HALE J. K.-VERDUYN LUNEL S. M.: 
Introduction to Functional Differential Equations. Appl. Math. Sci. 99, Springer-Verlag, New York, Inc., 1993. 
MR 1243878[6] HAŠČAK A.: 
On the relationship between the initial and multipoint boundary value problems for n-th order linear differential equations with delays. Arch. Math. (Brno) 26 (1990), 207-214. 
MR 1188972[7] KELEVEDJIEV P.: 
Existence of solutions for two-point boundary value problems. Nonlinear Anal. 22 (1994), 217-224. 
MR 1258957 | 
Zbl 0797.34019[8] MAWHIN J.: 
Topological Degree Methods in Nonlinear Boundary Value Problems. CBMS Regional Conf. Ser. in Math. 40, Amer. Math. Soc, Providence, R.I., 1979. 
MR 0525202 | 
Zbl 0414.34025[9] NTOUYAS S. K.-SFICAS Y. G.-TSAMATOS P. CH.: 
An existence principle for boundary value problems for second order functional-differential equations. Nonlinear Anal. 2 (1993), 215-222. 
MR 1202200 | 
Zbl 0774.34052[10] RACHŮNKOVA I.-STANĚK S.: 
Topological degree method in functional boundary value problems. Nonlinear Anal. 27 (153-166). 
MR 1389475 | 
Zbl 0856.34075[11] RODRIGUES A.-TINEO A.: 
Existence theorems for the Dirichlet problem without growth restrictions. J. Math. Anal. Appl. 135 (1988), 1-7. 
MR 0960802[12] STANĚK S.: 
On some boundary value problems for second order functional differential equations. Nonlinear Anal. 28 (1997), 539-546. 
MR 1420798 | 
Zbl 0873.34053