Title:
|
Existence criterions for generalized solutions of functional boundary value problems without growth restrictions (English) |
Author:
|
Staněk, Svatoslav |
Language:
|
English |
Journal:
|
Mathematica Slovaca |
ISSN:
|
0139-9918 |
Volume:
|
49 |
Issue:
|
3 |
Year:
|
1999 |
Pages:
|
305-321 |
. |
Category:
|
math |
. |
MSC:
|
34B15 |
MSC:
|
34K10 |
MSC:
|
37B30 |
MSC:
|
37C25 |
idZBL:
|
Zbl 0964.34050 |
idMR:
|
MR1728242 |
. |
Date available:
|
2009-09-25T11:38:21Z |
Last updated:
|
2012-08-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128614 |
. |
Reference:
|
[1] AZBELEV N. V.vMAKSIMOV V. P.-RAKHMATULLINA L. F.: Introduction to the Theory of Functional Differential Equations.Nauka, Moscow, 1991. (Russian) Zbl 0725.34071, MR 1144998 |
Reference:
|
[2] BERNFELD S. R.-LAKSHMIKANTHAM V.: An Introduction to Nonlinear Boundary Value Problems.Academic Press, Inc., New York-London, 1974. Zbl 0286.34018, MR 0445048 |
Reference:
|
[3] DE COSTER C.: Pairs of positive solutions for the one-dimensional p-Laplacian.Nonlinear Anal. 23(5) (1994), 669-681. Zbl 0813.34021, MR 1297285 |
Reference:
|
[4] DEIMLING K.: Nonlinear Functional Analysis.Springer-Verlag, Berlin-Heidelberg, 1985. Zbl 0559.47040, MR 0787404 |
Reference:
|
[5] HALE J. K.-VERDUYN LUNEL S. M.: Introduction to Functional Differential Equations.Appl. Math. Sci. 99, Springer-Verlag, New York, Inc., 1993. MR 1243878 |
Reference:
|
[6] HAŠČAK A.: On the relationship between the initial and multipoint boundary value problems for n-th order linear differential equations with delays.Arch. Math. (Brno) 26 (1990), 207-214. MR 1188972 |
Reference:
|
[7] KELEVEDJIEV P.: Existence of solutions for two-point boundary value problems.Nonlinear Anal. 22 (1994), 217-224. Zbl 0797.34019, MR 1258957 |
Reference:
|
[8] MAWHIN J.: Topological Degree Methods in Nonlinear Boundary Value Problems.CBMS Regional Conf. Ser. in Math. 40, Amer. Math. Soc, Providence, R.I., 1979. Zbl 0414.34025, MR 0525202 |
Reference:
|
[9] NTOUYAS S. K.-SFICAS Y. G.-TSAMATOS P. CH.: An existence principle for boundary value problems for second order functional-differential equations.Nonlinear Anal. 2 (1993), 215-222. Zbl 0774.34052, MR 1202200 |
Reference:
|
[10] RACHŮNKOVA I.-STANĚK S.: Topological degree method in functional boundary value problems.Nonlinear Anal. 27 (153-166). Zbl 0856.34075, MR 1389475 |
Reference:
|
[11] RODRIGUES A.-TINEO A.: Existence theorems for the Dirichlet problem without growth restrictions.J. Math. Anal. Appl. 135 (1988), 1-7. MR 0960802 |
Reference:
|
[12] STANĚK S.: On some boundary value problems for second order functional differential equations.Nonlinear Anal. 28 (1997), 539-546. Zbl 0873.34053, MR 1420798 |
. |