Previous |  Up |  Next

Article

Title: Congruence of Ankeny-Artin-Chowla type for cyclic fields (English)
Author: Jakubec, Stanislav
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 48
Issue: 3
Year: 1998
Pages: 323-326
.
Category: math
.
MSC: 11R29
idZBL: Zbl 0939.11036
idMR: MR1647635
.
Date available: 2009-09-25T11:31:05Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/128792
.
Reference: [1] FENG, KE QIN.: The Ankeny-Artin-Chowla formula for cubic cyclic number fields.J. China Univ. Sci. Тech. 12 (1982), 20-27. MR 0705871
Reference: [2] IТO H.: Congruence relations of Ankeny-Artin-Chowla type for pure cubic field.Nagoya Math. J. 96 (1984), 95-112. MR 0771071
Reference: [3] JAKUBEC S.: The congruence for Gauss's period.J. Number Тheory 48 (1994), 36-45. MR 1284872
Reference: [4] JAKUBEC S.: Congruence of Ankeny-Artin-Chowla type for cyclic fields of prime degree l.Math. Proc. Cambridge Philos. Soc. 119 (1996), 17-22. Zbl 0853.11085, MR 1356153
Reference: [5] KAMEI M.: Congruences of Ankeny-Artin-Chowla type for pure quartic and sectic fields.Nagoya Math. J. 108 (1987), 131-144. Zbl 0634.12009, MR 0920331
Reference: [6] MARKO F.: On the existence of p-units and Minkowski units in totally real cyclic fields.Abh. Math. Sem. Univ. Hamburg (To appeaг). Zbl 0869.11087, MR 1418221
Reference: [7] SCHERTZ R.: Über die analitische Klassenzahlformel für realle abelsche Zahlkorper.J. Reine Angew. Math. 307-308 (1979), 424-430. MR 0534237
Reference: [8] ZHANG, XIAN KE.: Ten formulae of type Ankeny-Artin-Chowla for class number of general cyclic quartic fields.Sci. China Ser. A 32 (1989), 417-428. MR 1050029
.

Files

Files Size Format View
MathSlov_48-1998-3_10.pdf 386.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo