Previous |  Up |  Next

Article

Title: On the order and the number of cliques in a random graph (English)
Author: Olejár, Daniel
Author: Toman, Eduard
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 47
Issue: 5
Year: 1997
Pages: 499-510
.
Category: math
.
MSC: 05C69
MSC: 05C80
idZBL: Zbl 0937.05067
idMR: MR1635293
.
Date available: 2009-09-25T11:25:47Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/128939
.
Reference: [1] BOLLOBÁS B.: Random Graphs.Academic Press, New York, 1985. Zbl 0592.05052, MR 0809996
Reference: [2] BOLLOBÁS B.-ERDŐS P.: Cliques in random graphs.Math. Proc. Cambridge Philos. Soc. 80 (1976), 419-427. Zbl 0344.05155, MR 0498256
Reference: [3] FARBER M.-HUJTER M., TUZA, ZS.: An upper bound on the number of cliques in a graph.Networks 23 (1993), 207-210. Zbl 0777.05070, MR 1215390
Reference: [4] FÜREDI Z.: The number of maximal independent sets in connected graphs.J. Graph Theory 11 (1987), 463-470. Zbl 0647.05032, MR 0917193
Reference: [5] HEDMAN B.: The maximum number of cliques in dense graphs.Discrete Math. 54 (1985), 161-166. Zbl 0569.05029, MR 0791657
Reference: [6] KALBFLEISCH J. G.: Complete subgraphs of random hypergraphs and bipartite graphs.In: Proc. of 3rd Southeastern Conference on Combinatorics, Graph Theory and Computing, Florida Atlantic University, 1972, pp. 297-304. Zbl 0272.05126, MR 0354447
Reference: [7] KORSHUNOV A. D.: The basic properties of random graphs with large numbers of vertices and edges.Uspekhi Mat. Nauk 40 (1985), 107-173. (Russian) MR 0783606
Reference: [8] MATULA D. W.: On the complete subgraphs of a random graph.In: Proc. 2nd Chapel Hill Conf. Combinatorial Math, and its Applications (R. C. Bose et al., eds.), Univ. North Carolina, Chapel Hill, 1970, pp. 356-369. Zbl 0209.28101, MR 0266796
Reference: [9] MATULA D. W.: The employee party problem.Notices Amer. Math. Soc. 19 (1972), A-382.
Reference: [10] MATULA D. W.: The largest clique size in a random graph.Technical report CS 7608, Dept. of Computer Science, Southern Methodist University, Dallas, 1976.
Reference: [11] MOON J. W.-MOSER L.: On cliques in graphs.Israel J. Math. 3 (1965), 22-28. Zbl 0144.23205, MR 0182577
Reference: [12] PALMER E. M.: Graphical Evolution: An Introduction to the Theory of Random Graphs.John Wiley, New York, 1985. Zbl 0566.05002, MR 0795795
.

Files

Files Size Format View
MathSlov_47-1997-5_2.pdf 798.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo