Previous |  Up |  Next

Article

Title: Semigroups and Hilbert's fifth problem (English)
Author: Hofmann, Karl Heinrich
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 44
Issue: 3
Year: 1994
Pages: 365-377
.
Category: math
.
MSC: 01A55
MSC: 01A60
MSC: 22-03
MSC: 22A15
MSC: 22D05
MSC: 22E05
idZBL: Zbl 0823.22003
idMR: MR1307325
.
Date available: 2009-09-25T10:57:50Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/129393
.
Reference: [1] ABEL N. H.: Untersuchung der Funktionen zweier unabhängig veränderlicher Großen x and y, wie f(x,y), welche die Eigenschaft haben, daß f(z,f(x,y)) eine symmetrische Funktion von z, x und y ist.J. Reine Angew. Math.1 (1826). 11-15.
Reference: [2] ACZÉL J.: The State of the second part of Hilbert's Fifth Problem.Bull. Anier. Math. Soc. 20 (1989). 153-163. Zbl 0676.39004, MR 0981872
Reference: [3] BOREL A.: Deane Montgomery 1909-1992.Notices Anier. Math. Soc. 39 (1992). 684-687. Zbl 1194.01066, MR 1180013
Reference: [4] BROWN D. R., HOUSTON. R. S.: Cancellative semigroups on manifolds.Semigroup Forum 35 (1987). 279-302. Zbl 0626.22001, MR 0900105
Reference: [5] COMFORT W. W., HOFMANN. K. H., REMUS D.: Topological groups and semigroups.In: Recent Progress in General Topology (M. Hušek and J. van Mill. eds.). Elsevier 1992, pp. 57-144. Zbl 0798.22001, MR 1229123
Reference: [4] GLEASON. A. M.: Groups without small subgroups.Ann. of Math. 56 (1952). 193-212. Zbl 0049.30105, MR 0049203
Reference: [7] GRUNDHÖFFER T., SALZMANN H., STROPPEL M.: M.: Compact Projective Plains.(In preparation).
Reference: [8] HILGERT J., HOFMANN. K. H., LAWSON. J. D.: Lie groups, convex cones, and semigroups.Oxford university Press, 1989. Zbl 0701.22001, MR 1032761
Reference: [9] HILGERT J., NEEB K.-H.: Lie Semigroups and their Applications.Lecture Notes in Math. 1552. Springer-New York-Berlin, 1993. Zbl 0807.22001, MR 1317811
Reference: [10] HOFMANN K. H., MOSTERT P. S.: Elements of Compact Semigroups.Charles R. Merrill Books. Columbus. Ohio. 1966. Zbl 0161.01901, MR 0209387
Reference: [11] HOFMANN K. H., WEISS W.: More on cancellative semigroups on manifolds.Semigroup Forum 37 (1988), 93-111. Zbl 0635.22003, MR 0929446
Reference: [12] IWASAWA K.: On some types of topological groups.Ann. of Math. 50 (1949), 507-557. Zbl 0034.01803, MR 0029911
Reference: [13] JACOBY R.: Some theorems on the structure of locally compact local groups.Ann. of Math. 50 (1957), 36-69. Zbl 0084.03202, MR 0089997
Reference: [14] von KOCH H.: Sur un curbe continue sans tangente obtenue par une construction géométrique élémentaire.Acta Math. 30 (1906), 145-174. MR 1555026
Reference: [15] : Mathematical Developments Arising from Hilbert Problems.Proc. Sympos. Pure Math. XXXVIII. Amer. Math. Soc., Providence, R.I., 1976. Zbl 0326.00002
Reference: [16] : Deane Montgomery 1909-1992.. Collection of Addresses delivered at the Institute for Advanced Study on November 13, 1992, Inst. Adv. Study, Princeton, 1993.
Reference: [17] MONTGOMERY D., ZIPPIN L.: Small subgroups of finite dimensional groups.Ann. of Math. 56 (1952), 213-241. Zbl 0049.30107, MR 0049204
Reference: [18] NEEB. K.-H.: Holomorphic Representation Theory and Coadjoint Orbits of Convexity Type.Habilitationsschrift, Technische Hochschule, Darmstadt, 1993.
Reference: [19] SCHWARZ S.: Remark on bicompact semigroups.Mat.-Fyz. Časopis 5 (1955), 86-89. MR 0077872
Reference: [20] SCHWARZ S.: On Hausdorff bicompact semigroups.Czechoslovak Math. J. 5(80) (1955), 1-23. Zbl 0068.02301, MR 0074769
Reference: [21] SCHWARZ S.: Characters of bicompact semigroups.Czechoslovak Math. J. 5(80) (1955), 24-28. MR 0074770
Reference: [22] SCHWARZ S.: The theory of characters of commutative Hausdorff bicompact semigroups.Czechoslovak Math. J. 6(81) (1956), 330-364. MR 0092098
Reference: [23] SKLJARENKO E. G.: Zum 5. Hilbertschen Problem.In: Ostwalds Klassiker Exakt. Wiss. 252. Akad. Verl. Gesellsch., Leipzig, 1987, pp. 21-24.
Reference: [24] YAMABE H.: On the conjecture of Iwasawa and Gleason.Ann. of Math 58 (1953), 48-54. Zbl 0053.01601, MR 0054613
Reference: [25] YAMABE H.: Generalization of a theorem of Gleason.Ann. of Math 58 (1953), 351-365. Zbl 0053.01602, MR 0058607
Reference: [26] HOFMANN K. H., LAWSON J. D.: Linearly ordered semigroups: A historical overview.In: Progress in Semigroups and Related Areas (K. H. Hofmann and M. Mislove, eds.), 1994 (To appear). MR 0376461
.

Files

Files Size Format View
MathSlov_44-1994-3_8.pdf 1.160Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo