Previous |  Up |  Next

Article

References:
[1] BALBES R.-DWINGER P.: Distributive Lattices. Univ. of Missouri Press, Columbia, 1974. MR 0373985 | Zbl 0321.06012
[2] BELLUCE L. P.: Semisimple algebras of infinite valued logic and bold fuzzy set theory. Canad. Ј. Math. 38 (1986), 1356-1379. MR 0873417 | Zbl 0625.03009
[3] BELLUCE L. P.-SESSA S.: Orthogonal decompositions of MV-spaces. Mathware Soft Comput. 4 (1997), 5-22. MR 1463105 | Zbl 0880.06004
[4] CHAЈDA I.-RACHŮNEK Ј.: Annihilators in normal autometrized algebras. Czechoslovak Math. Ј. (To appear).
[5] CHANG C. C.: Algebraic analysis of many valued logics. Trans. Amer. Мath. Soc. 88 (1958), 467-490. MR 0094302 | Zbl 0084.00704
[6] CHANG. C. C.: A new proof of the completeness of the Lukasiewicz axioms. Trans. Amer. Math. Soc. 93 (1959), 74-80. MR 0122718 | Zbl 0093.01104
[7] CIGNOLI R.: Free lattice-ordered abelian groups and varieties of MV-algebras. In: Proc. IX Latin. Amеr Symp. Math. Logic, Part 1. Not. Log. Mat. 38, 1993 pp. 113-118. MR 1332526 | Zbl 0827.06012
[8] DI NOLA A.-LIGUORI F.-SESSA S.: Using maximal ideals in the classification of MV-algebras. Portugal. Math. 50 (1993) 87-102. MR 1300588 | Zbl 0799.06021
[9] FILIPOIU A.-GEORGESCU G.: On values in relatively normal lattices. Discrete Math 161 (1996), 87-100. MR 1420523 | Zbl 0872.06008
[10] HANSEN M. E.: Minimal prime ideals autometrized algebras. Czеchoslovak Math. J. 44(119) (1994), 81-90. MR 1257938
[11] HOO C. S.: MV-algebras, ideals and semisimplicity. Math. Japonica 34 (1989), 563-583. MR 1005257 | Zbl 0677.03041
[12] JAKUBÍK J.: Direct product decompositions of MV-algebras. Czеchoslovak Math. J. 44(119) (1994), 725-739.
[13] JAKUBÍK J.: On complete MV-algebras. Czechoslovak Math. J. 45(120) (1995), 473-480. MR 1344513 | Zbl 0841.06010
[14] JAKUBÍK J.: On archimedean MV-algebras. Czechoslovak Math. J. 48(123) (1998), 575-582. MR 1637871 | Zbl 0951.06011
[15] JAKUBIK J.: Complete generators and maximal completions of MV-algebras. Czechoslovak Math. J. 48(123) (1998), 597-608. MR 1637863 | Zbl 0951.06010
[16] KOVÁŘ T.: Two remarks on dually residuated lattice ordered semigroups. Math. Slоvaca (То appear). Zbl 0943.06007
[17] MARТINEZ J.: Archimedean lattices. Algеbra Univеrsalis 3 (1973), 247-260.
[18] MUNDICI D.: Interpretation of AF C*-algebras in Łukasiewicz sentential calculus. J. Funct. Anal. 65 (1986), 15-63. MR 0819173
[19] RAСHŮNEK J.: Prime ideals in autometrized algebras. Сzеchоslоvak Math. J. 37(112) (1987), 65-69. MR 0875128
[20] RAСHŮNEK J.: Polars in autometrized algebras. Сzеchоslоvak Math. J. 39(114) (1989), 681-685. MR 1018003
[21] RAСHŮNEK J.: Regular ideals in autometrized algebras. Math. Slоvaca 40 (1990), 117-122. MR 1094766
[22] RAСHŮNEK J.: Spectra of autometrized lattice algebras. Math. Bоhеmica 123 (1998), 87-94. MR 1618727
[23] RAСHŮNEK J.: DRl-semigroups and MV -algebras. Сzеchоslоvak Math. J. 48(123) (1998), 365-372.
[24] RAСHŮNEK J.: $MV$-algebras are categorically equivalent to a class of $\scr{DR}l_{1(i)}$-semi-groups. Math. Bоhеmica 123 (1998), 437-441. MR 1667115
[25] SNODGRASS J. Т.-ТSINAKIS, С: The finite basis theorem for relatively normal lattices. Algеbra Univеrsalis 33 (1995), 40-67. MR 1303631 | Zbl 0819.06009
[26] SWAMY K. L. N.: Dually residuated lattice ordered semigroups. Math. Ann. 159 (1965), 105-114. MR 0183797 | Zbl 0138.02104
[27] SWAMY K. L. N.: Dually residuated lattice ordered semigroups II. Math. Ann. 160 (1965), 64-71. MR 0191851 | Zbl 0138.02104
[28] SWAMY K. L. N.: Dually residuated lattice ordered semigroups III. Math. Ann. 167 (1966), 71-74. MR 0200364 | Zbl 0158.02601
[29] SWAMY K. L. N.-RAO N. P.: Ideals in autometrized algebras. J. Austral. Math. Sоc. Sеr. A 24 (1977), 362-374. MR 0469843 | Zbl 0427.06006
[30] SWAMY K. L. N.-SUBBA RAO B. W.: Isometries in dually residuated lattice ordered semigroups. Math. Sem. Notes 8 (1980), 369-380. MR 0601906
Partner of
EuDML logo