[2] BELLUCE L. P.:
Semisimple algebras of infinite valued logic and bold fuzzy set theory. Canad. Ј. Math. 38 (1986), 1356-1379.
MR 0873417 |
Zbl 0625.03009
[3] BELLUCE L. P.-SESSA S.:
Orthogonal decompositions of MV-spaces. Mathware Soft Comput. 4 (1997), 5-22.
MR 1463105 |
Zbl 0880.06004
[4] CHAЈDA I.-RACHŮNEK Ј.: Annihilators in normal autometrized algebras. Czechoslovak Math. Ј. (To appear).
[5] CHANG C. C.:
Algebraic analysis of many valued logics. Trans. Amer. Мath. Soc. 88 (1958), 467-490.
MR 0094302 |
Zbl 0084.00704
[6] CHANG. C. C.:
A new proof of the completeness of the Lukasiewicz axioms. Trans. Amer. Math. Soc. 93 (1959), 74-80.
MR 0122718 |
Zbl 0093.01104
[7] CIGNOLI R.:
Free lattice-ordered abelian groups and varieties of MV-algebras. In: Proc. IX Latin. Amеr Symp. Math. Logic, Part 1. Not. Log. Mat. 38, 1993 pp. 113-118.
MR 1332526 |
Zbl 0827.06012
[8] DI NOLA A.-LIGUORI F.-SESSA S.:
Using maximal ideals in the classification of MV-algebras. Portugal. Math. 50 (1993) 87-102.
MR 1300588 |
Zbl 0799.06021
[9] FILIPOIU A.-GEORGESCU G.:
On values in relatively normal lattices. Discrete Math 161 (1996), 87-100.
MR 1420523 |
Zbl 0872.06008
[10] HANSEN M. E.:
Minimal prime ideals autometrized algebras. Czеchoslovak Math. J. 44(119) (1994), 81-90.
MR 1257938
[12] JAKUBÍK J.: Direct product decompositions of MV-algebras. Czеchoslovak Math. J. 44(119) (1994), 725-739.
[15] JAKUBIK J.:
Complete generators and maximal completions of MV-algebras. Czechoslovak Math. J. 48(123) (1998), 597-608.
MR 1637863 |
Zbl 0951.06010
[16] KOVÁŘ T.:
Two remarks on dually residuated lattice ordered semigroups. Math. Slоvaca (То appear).
Zbl 0943.06007
[17] MARТINEZ J.: Archimedean lattices. Algеbra Univеrsalis 3 (1973), 247-260.
[18] MUNDICI D.:
Interpretation of AF C*-algebras in Łukasiewicz sentential calculus. J. Funct. Anal. 65 (1986), 15-63.
MR 0819173
[19] RAСHŮNEK J.:
Prime ideals in autometrized algebras. Сzеchоslоvak Math. J. 37(112) (1987), 65-69.
MR 0875128
[20] RAСHŮNEK J.:
Polars in autometrized algebras. Сzеchоslоvak Math. J. 39(114) (1989), 681-685.
MR 1018003
[21] RAСHŮNEK J.:
Regular ideals in autometrized algebras. Math. Slоvaca 40 (1990), 117-122.
MR 1094766
[22] RAСHŮNEK J.:
Spectra of autometrized lattice algebras. Math. Bоhеmica 123 (1998), 87-94.
MR 1618727
[23] RAСHŮNEK J.: DRl-semigroups and MV -algebras. Сzеchоslоvak Math. J. 48(123) (1998), 365-372.
[24] RAСHŮNEK J.:
$MV$-algebras are categorically equivalent to a class of $\scr{DR}l_{1(i)}$-semi-groups. Math. Bоhеmica 123 (1998), 437-441.
MR 1667115
[25] SNODGRASS J. Т.-ТSINAKIS, С:
The finite basis theorem for relatively normal lattices. Algеbra Univеrsalis 33 (1995), 40-67.
MR 1303631 |
Zbl 0819.06009
[26] SWAMY K. L. N.:
Dually residuated lattice ordered semigroups. Math. Ann. 159 (1965), 105-114.
MR 0183797 |
Zbl 0138.02104
[27] SWAMY K. L. N.:
Dually residuated lattice ordered semigroups II. Math. Ann. 160 (1965), 64-71.
MR 0191851 |
Zbl 0138.02104
[28] SWAMY K. L. N.:
Dually residuated lattice ordered semigroups III. Math. Ann. 167 (1966), 71-74.
MR 0200364 |
Zbl 0158.02601
[29] SWAMY K. L. N.-RAO N. P.:
Ideals in autometrized algebras. J. Austral. Math. Sоc. Sеr. A 24 (1977), 362-374.
MR 0469843 |
Zbl 0427.06006
[30] SWAMY K. L. N.-SUBBA RAO B. W.:
Isometries in dually residuated lattice ordered semigroups. Math. Sem. Notes 8 (1980), 369-380.
MR 0601906