Previous |  Up |  Next

Article

Title: On minimal area augmentation of digital convex $n$-gons (English)
Author: Matić-Kekić, Snežana
Author: Acketa, Dragan M.
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 48
Issue: 1
Year: 1998
Pages: 87-99
.
Category: math
.
MSC: 68U05
idZBL: Zbl 0937.68133
idMR: MR1635251
.
Date available: 2009-09-25T11:28:14Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/130179
.
Reference: [1] ACKETA D.-MATIC-KEKIC S.: A greedy optimal solution for digital convex polygons with minimal area.In: IX conference on applied mathematics, Budva, 1995, pp. 305-311. Zbl 0865.68061, MR 1350833
Reference: [2] ACKETA D.-ŽUNIC J.: On the maximal number of edges of digital convex polygons included into an m x m-grid.J. Combin. Theory Ser. A 69 (1995), 358-368. MR 1313902
Reference: [3] ACKETA D.-ŽUNIC J.: A simple construction of a digital convex n-gon with almost minimal diameter.Inform. Sci. 77 (1994), 275-291. MR 1282395
Reference: [4] COXETER H. S. M.: Introduction to Geometry.John Wiley and Sons Inc, New York, 1980.
Reference: [5] MATIĆ-KEKIĆ S.-ACKETA D. M.-ZUNIC J. D.: An exact construction of digital convex polygons with minimal diameter.Discrete Math, (special volume honouring Paul Erdös) 150 (1996), 303-313. Zbl 0848.68109, MR 1392739
Reference: [6] SIMPSON R. J.: Convex lattice polygons of minimum area.Bull. Austral. Math. Soc. 42 (1990), 353-367. MR 1083272
Reference: [7] VOSS K.-KLETTE R.: On the maximal number of edges of a convex digital polygon included into a square.Comput. Artificial Intelligence (former: Počítače a umelá inteligencia) 1 (1982), 549-558.
.

Files

Files Size Format View
MathSlov_48-1998-1_8.pdf 1.324Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo