Title:
|
On the structure of the set of solutions of nonlinear boundary value problems for ODEs on unbounded intervals (English) |
Author:
|
Kečkemétyová, Mária |
Language:
|
English |
Journal:
|
Mathematica Slovaca |
ISSN:
|
0139-9918 |
Volume:
|
56 |
Issue:
|
3 |
Year:
|
2006 |
Pages:
|
333-347 |
. |
Category:
|
math |
. |
MSC:
|
34B40 |
idZBL:
|
Zbl 1141.34021 |
idMR:
|
MR2250084 |
. |
Date available:
|
2009-09-25T14:32:44Z |
Last updated:
|
2012-08-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/130347 |
. |
Reference:
|
[1] ANDRES J.-GABOR G.-GORNIEWICZ L.: Acyclicity of solution sets to functional inclusions.Nonlinear AnaL 49 (2002), 671-688. Zbl 1012.34011, MR 1894303 |
Reference:
|
[2] ANDRES J.-GABOR G.-GORNIEWICZ L.: Topological structure of solution sets to multivalued asymptotic problems.Z. Anal. Anwendungen 18 (1999), 1-20. |
Reference:
|
[3] ANDRES J.-GABOR G.-GORNIEWICZ L.: Topological structure of solution sets to multi-valued asymptotic problems.Z. Anal. Anwendungen 19 (2000), 35-60. Zbl 0974.34045, MR 1748055 |
Reference:
|
[4] ANDRES J.-GORNIEWICZ L.: Topological Fixed Point Principles for Boundary Value Problems.Kluwer, Dordrecht, 2003. Zbl 1029.55002, MR 1998968 |
Reference:
|
[5] CECCHI M.-MARINI M.-ZEZZA P. L.: Linear boundary value problems for systems of ordinary differential equations on non compact intervals.Ann. Mat. Pura Appl. (4) 123 (1980), 267-285. Zbl 0442.34016, MR 0581933 |
Reference:
|
[6] CZARNOWSKI K.-PRUSZKO T.: On the structure of fixed point sets of compact maps in $B_0$ spaces with applications in unbounded domain.J. Math. Anal. Appl. 154 (1991), 151-163. MR 1087965 |
Reference:
|
[7] DUGUNDJI J.-GRANAS A.: Fixed Point Theory.PWN, Warszawa, 1982. Zbl 0483.47038, MR 0660439 |
Reference:
|
[8] EDWARDS R. E.: Functional Analysis. Theory and Applications.Holt Rinehart and Winston, New York-Chicago-San Francisco-Toronto-London, 1965. Zbl 0182.16101, MR 0221256 |
Reference:
|
[9] GABOR G.: On the acyclicity of fixed point sets multivalued maps.Topol. Methods Nonlinear Anal. 14 (1999), 327-343. MR 1766183 |
Reference:
|
[10] GORNIEWICZ L.: Topological approach to differential inclusions.In: Topological Methods in Differential Equations and Inclusions. Proceedings of the NATO Advanced Study Institute and Seminaire de Mathematiques Superieures on Topological Methods in Differential Equations and Inclusions, Montreal, Canada, July 11-22, 1994. (A. Granas et al., eds.), Kluwer Academic Publishers. NATO ASI Ser., Ser. C, Math. Phys. Sci. 472, Dordrecht, 1995, pp. 129-190. MR 1368672 |
Reference:
|
[11] KEČKEMÉTYOVÁ M.: On the existence of a solution for nonlinear operator equations in Frechet spaces.Math. Slovaca 42 (1992), 43-54. Zbl 0744.34022, MR 1159490 |
Reference:
|
[12] KEČKEMÉTYOVÁ M.: Continuous solutions of nonlinear boundary value problems for ODEs on unbounded intervals.Math. Slovaca 42 (1992), 279-297. MR 1182959 |
Reference:
|
[13] KUBÁČEK Z.: On the structure of fixed point sets of same compact maps in the Frechet space.Math. Bohem. 118 (1993), 343-358. MR 1251881 |
Reference:
|
[14] ŠEDA V.-BELOHOREC S.: A remark on the second order functional differential systems.Arch. Math. (Brno) 29 (1993), 169-176. MR 1263119 |
Reference:
|
[15] ŠEDA V.-ELIAŠ J.: On the initial value problem for functional differential systems.Proc. Georgian Acad. Sci., Math. 1 (1993), 467-476. Zbl 0801.34062, MR 1262578 |
Reference:
|
[16] ŠEDA V.-KUBÁČEK Z.: On the connectedness of the set of fixed points of a compact operator in the Frechet space $C^m([b, \infty), R^n)$.Czechoslovak Math. J. 42 (1992), 577-588. MR 1182189 |
Reference:
|
[17] ŠVEC M.: Integral Equation.MFF UK, Bratislava, 1983. (Slovak) |
Reference:
|
[18] VIDOSSICH G.: On the structure of the set of solutions of nonlinear equations.J. Math. Anal. Appl. 34 (1971), 602-617. MR 0283645 |
Reference:
|
[19] VIDOSSICH G.: A fixed point theorem for function spaces.J. Math. Anal. Appl. 36 (1971), 581-587. Zbl 0194.44903, MR 0285945 |
Reference:
|
[20] YOSIDA K.: Functional Analysis.Springer-Verlag, Berlin, 1965. Zbl 0126.11504 |
Reference:
|
[21] ZEZZA P. L.: An equivalence theorem for nonlinear operator equations and an extension of Leray-Schauder continuation theorem.Boll. Unione Mat. Ital. Sez. A Mat. Soc. Cult. (5) 15 (1978), 545-551. MR 0521099 |
. |