Previous |  Up |  Next

Article

Title: On the structure of the set of solutions of nonlinear boundary value problems for ODEs on unbounded intervals (English)
Author: Kečkemétyová, Mária
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 56
Issue: 3
Year: 2006
Pages: 333-347
.
Category: math
.
MSC: 34B40
idZBL: Zbl 1141.34021
idMR: MR2250084
.
Date available: 2009-09-25T14:32:44Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/130347
.
Reference: [1] ANDRES J.-GABOR G.-GORNIEWICZ L.: Acyclicity of solution sets to functional inclusions.Nonlinear AnaL 49 (2002), 671-688. Zbl 1012.34011, MR 1894303
Reference: [2] ANDRES J.-GABOR G.-GORNIEWICZ L.: Topological structure of solution sets to multivalued asymptotic problems.Z. Anal. Anwendungen 18 (1999), 1-20.
Reference: [3] ANDRES J.-GABOR G.-GORNIEWICZ L.: Topological structure of solution sets to multi-valued asymptotic problems.Z. Anal. Anwendungen 19 (2000), 35-60. Zbl 0974.34045, MR 1748055
Reference: [4] ANDRES J.-GORNIEWICZ L.: Topological Fixed Point Principles for Boundary Value Problems.Kluwer, Dordrecht, 2003. Zbl 1029.55002, MR 1998968
Reference: [5] CECCHI M.-MARINI M.-ZEZZA P. L.: Linear boundary value problems for systems of ordinary differential equations on non compact intervals.Ann. Mat. Pura Appl. (4) 123 (1980), 267-285. Zbl 0442.34016, MR 0581933
Reference: [6] CZARNOWSKI K.-PRUSZKO T.: On the structure of fixed point sets of compact maps in $B_0$ spaces with applications in unbounded domain.J. Math. Anal. Appl. 154 (1991), 151-163. MR 1087965
Reference: [7] DUGUNDJI J.-GRANAS A.: Fixed Point Theory.PWN, Warszawa, 1982. Zbl 0483.47038, MR 0660439
Reference: [8] EDWARDS R. E.: Functional Analysis. Theory and Applications.Holt Rinehart and Winston, New York-Chicago-San Francisco-Toronto-London, 1965. Zbl 0182.16101, MR 0221256
Reference: [9] GABOR G.: On the acyclicity of fixed point sets multivalued maps.Topol. Methods Nonlinear Anal. 14 (1999), 327-343. MR 1766183
Reference: [10] GORNIEWICZ L.: Topological approach to differential inclusions.In: Topological Methods in Differential Equations and Inclusions. Proceedings of the NATO Advanced Study Institute and Seminaire de Mathematiques Superieures on Topological Methods in Differential Equations and Inclusions, Montreal, Canada, July 11-22, 1994. (A. Granas et al., eds.), Kluwer Academic Publishers. NATO ASI Ser., Ser. C, Math. Phys. Sci. 472, Dordrecht, 1995, pp. 129-190. MR 1368672
Reference: [11] KEČKEMÉTYOVÁ M.: On the existence of a solution for nonlinear operator equations in Frechet spaces.Math. Slovaca 42 (1992), 43-54. Zbl 0744.34022, MR 1159490
Reference: [12] KEČKEMÉTYOVÁ M.: Continuous solutions of nonlinear boundary value problems for ODEs on unbounded intervals.Math. Slovaca 42 (1992), 279-297. MR 1182959
Reference: [13] KUBÁČEK Z.: On the structure of fixed point sets of same compact maps in the Frechet space.Math. Bohem. 118 (1993), 343-358. MR 1251881
Reference: [14] ŠEDA V.-BELOHOREC S.: A remark on the second order functional differential systems.Arch. Math. (Brno) 29 (1993), 169-176. MR 1263119
Reference: [15] ŠEDA V.-ELIAŠ J.: On the initial value problem for functional differential systems.Proc. Georgian Acad. Sci., Math. 1 (1993), 467-476. Zbl 0801.34062, MR 1262578
Reference: [16] ŠEDA V.-KUBÁČEK Z.: On the connectedness of the set of fixed points of a compact operator in the Frechet space $C^m([b, \infty), R^n)$.Czechoslovak Math. J. 42 (1992), 577-588. MR 1182189
Reference: [17] ŠVEC M.: Integral Equation.MFF UK, Bratislava, 1983. (Slovak)
Reference: [18] VIDOSSICH G.: On the structure of the set of solutions of nonlinear equations.J. Math. Anal. Appl. 34 (1971), 602-617. MR 0283645
Reference: [19] VIDOSSICH G.: A fixed point theorem for function spaces.J. Math. Anal. Appl. 36 (1971), 581-587. Zbl 0194.44903, MR 0285945
Reference: [20] YOSIDA K.: Functional Analysis.Springer-Verlag, Berlin, 1965. Zbl 0126.11504
Reference: [21] ZEZZA P. L.: An equivalence theorem for nonlinear operator equations and an extension of Leray-Schauder continuation theorem.Boll. Unione Mat. Ital. Sez. A Mat. Soc. Cult. (5) 15 (1978), 545-551. MR 0521099
.

Files

Files Size Format View
MathSlov_56-2006-3_8.pdf 1.113Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo