Previous |  Up |  Next

Article

Title: Diophantine representation of the decimal expansions of $e$ and $\pi$ (English)
Author: Baxa, Christoph
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 50
Issue: 5
Year: 2000
Pages: 531-539
.
Category: math
.
MSC: 11A63
MSC: 11U05
idZBL: Zbl 0984.11007
idMR: MR1813701
.
Date available: 2009-09-25T11:47:40Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/130373
.
Reference: [1] BAILEY D. H.-BORWEIN J. M.-BORWEIN P. B.-PLOUFFE S.: The quest for Pi.Math. Intell. 19 (1997), 50-57. Zbl 0878.11002, MR 1439159
Reference: [2] BAXA C.: A note on Diophantine representations.Amer. Math. Monthly 100 (1993), 138-143. Zbl 0805.11085, MR 1212399
Reference: [3] DAVIS M.: Hilberťs Tenth Problem is unsolvable.Amer. Math. Monthly 80 (1973), 233-269 (Reprinted as Appendix 2 in: DAVIS, M.: Computability and Unsolvability, Dover, New York, 1982). MR 0317916
Reference: [4] DAVIS M.-MAТIJASEVIČ, YU. V.-ROBINSON J.: Hilberťs Tenth Problem. Diophantine equations: Positive aspects of a negative solution.In: Mathematical Developments Arising from Hilbert Problems (F. E. Browder, ed.), Amer. Math. Soc, Providence, RI, 1976.
Reference: [5] DAVIS M.-PUТNAM H.-ROBINSON J.: The decision problem for exponential Diphantine equations.Ann. Matһ. 74 (1961), 425-436. MR 0133227
Reference: [6] JONES J. P.: Diophantine representation of Mersejine and Fermat primes.Acta Arith. 35 (1979), 209-221. MR 0550293
Reference: [7] JONES J. P.: Universal Diophantine equation.J. Symb. Logic 47 (1982), 549-571. Zbl 0492.03018, MR 0666816
Reference: [8] JONES J. P.-MAТIJASEVIČ, JU. V.: A new representation for the symmetric binomial coefficient and its applications.Ann. Sci. Math. Québec 6 (1982), 81-97. Zbl 0499.03028, MR 0672122
Reference: [9] JONES J. P.-MAТIJASEVIČ, YU. V.: Proof of recursive unsolvability of Hilberťs Tenth Problem.Amer. Math. Monthly 98 (1991), 689-709. MR 1130680
Reference: [10] JONES J. P.-SAТO D.-WADA H.-WIENS D.: Diophantine representatюn of the set of prime numbers.Amer. Math. Monthly 83 (1976), 449-464. MR 0414514
Reference: [11] MANIN, YU. I.: A Course in Mathematical Logic.Springer, New York, 1977. Zbl 0383.03002, MR 0457126
Reference: [12] MATIJASEVIČ, JU. V.: Enumerable sets are Diophantine.Soviet Math. Doklady 11 (1970), 354-358.
Reference: [13] MATIJASEVIČ, JU. V.: Diophantine representation of the set of prime numbers.Soviet Math. Doklady 12 (1971), 249-254.
Reference: [14] MATIYASEVICH, YU. V.: Hilberťs Tenth Problem.MIT Press, Cambridge-Massachusetts, 1993. MR 1244324
Reference: [15] PUTNAM H.: An unsolvable problem in number theory.J. Symb. Logic 25 (1960), 220-232. MR 0158825
Reference: [16] SMORYŃSKI C.: Logical Number Theory I.Springer, Berlin, 1991. Zbl 0759.03002, MR 1106853
.

Files

Files Size Format View
MathSlov_50-2000-5_4.pdf 754.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo