[Be84] BERAN L.: 
Orthomodular Lattices. Algebraic Approach, Academia, Prague, 1984. 
MR 0785005[Bo54] BOOLE G.: 
An Investigation of the Laws of Thought on Which are Founded the Mathematical Theories of Logic and Probabilities. Macmillan/Dover PubL, London/New York, 1854/1958. 
MR 0085180[CG00] CHAJDA I.-GŁAZEK K.: 
A Basic Course on General Algebra. Zielona Góra Technical University Press, 2000. 
MR 1783394 | 
Zbl 0970.08001[CG69] CHEN C. C.-GRÄTZER G.: 
Stone lattices. I: Construction theorems. Canad. J. Math. 21 (1969), 884-894. 
MR 0242737 | 
Zbl 0184.03303[Da00] DAU F.: 
Implications of properties concerning complementation in finite lattices. In: Contributions to General Algebra 12 (D. Dorninger et al., eds.), Proceedings of the 58th workshop on general algebra "58. Arbeitstagung Allgemeine Algebra", Vienna, Austria, June 3-6, 1999, Verlag Johannes Heyn, Klagenfurt, 2000, pp. 145-154. 
MR 1777655[Di45] DILWORTH R. R.: 
Lattices with unique complements. Trans. Amer. Math. Soc. 57 (1945), 123-154. 
MR 0012263 | 
Zbl 0060.06103[Du97] DÜNTSCH, L: 
A logic for rough sets. Theoret. Comput. Sci. 179 (1997), 427-436. 
MR 1454599[Dz90] DZIK W.: 
Lattices adequate for intuitionistic predicate logic. In: Mathematical Logic. Proceedings of the Summer School and Conference Dedicated to the Ninetieth Anniversary of Arend Heyting (1898-1980), Held in Chaika, Bulgaria, September 13-23, 1988, Plenum Press, New York, 1990, pp. 293-297. 
MR 1084001[Hi02] HINTIKKA J.: 
Quantum logic as a fragment of independence-friendly logic. J. Philos. Logic 31 (2002), 197-209. 
MR 1917265 | 
Zbl 1011.03049[GK02] GANTER B.-KWUIDA L.: 
Representable Weak Dicomplementations on Finite Lattices. Contributions to General Algebra 14, Verlag Johannes Heyn, Klagenfurt, 2004. 
MR 2059565 | 
Zbl 1043.06010[GW99] GANTER B.-WILLE R.: 
Formal Concept Analysis. Mathematical Foundations, Springer, Berlin, 1999. 
MR 1707295 | 
Zbl 0909.06001[Gl29] GLIVENKO V.: Sur quelques points de la logique de M. Brouwer. Bulletin Acad. Bruxelles 15 (1929), 183-188.
[KAL83] KALMBACH G.: Othomodular Lattices. London Math. Soc. Monogr. 18, Academic Press Inc. (London) Ltd., London, 1983.
[Ka72] KATRIŇÁK T.: 
Über eine Konstruktion der distributiven pseudokomplementätren Verbände. Math. Nachr. 53 (1972). 
MR 0316334[Ka73] KATRIŇÁK T.: 
The structure of distributive double p-algebras. Regularity and congruences, Algebra Universalis 3 (1992), 238-246. 
MR 0332598[KM83] KATRIŇÁK T.-MEDERLY P.: 
Constructions of p-algebras. Algebra Universalis 17 (1983), 288-316. 
MR 0729938 | 
Zbl 0536.06004[Kw04] KWUIDA L.: 
Dicomplemented Lattices. A Contextual Generalization of Boolean Algebras, Shaker Verlag, Aachen, 2004. 
Zbl 1129.06006[La71] LAKSER H.: 
The structure of pseudocomplemented distributive lattices. I: Subdirect decomposition, Trans. Amer. Math. Soc. 156 (1971), 335-342. 
MR 0274358 | 
Zbl 0244.06011[Sa88] SALIІ V. V.: 
Lattices with Unique Complements. Transl. Math. Monogr. 69, Amer. Math. Soc, Providence, RI, 1988. 
MR 0931777[StЗб] STONE M. H.: 
The theory of representations for Boolean algebras. Trans. Amer. Math. Soc. 40 (1936), 37-111. 
MR 1501865 | 
Zbl 0014.34002[Ur79] URQUHART A.: 
Lattices with a dual homomorphic operation. Studia Logica 38 (1979), 201-209. 
MR 0544616 | 
Zbl 0425.06008[WІ82] WILLE R.: 
Restructuring lattice theory: an approach based on hierarchies of concepts. In: Ordered Sets (I. Rival, ed.), D. Reidel Publishing Company, Dordrecht-Boston-London, 1982, pp. 445-470. 
MR 0661303 | 
Zbl 0491.06008[WiOO] WILLE R.: 
Boolean concept logic. In: Conceptual Structures: Logical, Linguistic, and Computational Issues. 8th International Conference, ICCS 2000, Darmstadt, Germany, August 14-18, 2000. Proceedings (B. Ganter, G. W. Mineau, eds.), Lecture Notes in Artificial Intelligence 1867, Springer, Heidelberg, 2000, pp. 317-331. 
Zbl 0973.03035