Previous |  Up |  Next


Title: Generalizations of Boolean algebras. An attribute exploration (English)
Author: Kwuida, Léonard
Author: Pech, Christian
Author: Reppe, Heiko
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 56
Issue: 2
Year: 2006
Pages: 145-165
Category: math
MSC: 03G05
MSC: 03G10
MSC: 03G25
MSC: 06B23
MSC: 06C15
MSC: 06D15
MSC: 06D30
MSC: 06E05
MSC: 68T30
idZBL: Zbl 1150.03342
idMR: MR2229338
Date available: 2009-09-25T14:30:56Z
Last updated: 2012-08-01
Stable URL:
Reference: [Be84] BERAN L.: Orthomodular Lattices.Algebraic Approach, Academia, Prague, 1984. MR 0785005
Reference: [Bo54] BOOLE G.: An Investigation of the Laws of Thought on Which are Founded the Mathematical Theories of Logic and Probabilities.Macmillan/Dover PubL, London/New York, 1854/1958. MR 0085180
Reference: [Bu03] BURMEISTER P.: Formal Concept Analysis with ConImp: Introduction to the Basic Features.TU-Darmstadt, Darmstadt, 2003;
Reference: [BV94] BLYTH T. T.-VARLET J. J.: Ockham Algebras.Oxford Univ. Press, Oxford, 1994. Zbl 0835.06011, MR 1315526
Reference: [CG00] CHAJDA I.-GŁAZEK K.: A Basic Course on General Algebra.Zielona Góra Technical University Press, 2000. Zbl 0970.08001, MR 1783394
Reference: [CG69] CHEN C. C.-GRÄTZER G.: Stone lattices. I: Construction theorems.Canad. J. Math. 21 (1969), 884-894. Zbl 0184.03303, MR 0242737
Reference: [Da00] DAU F.: Implications of properties concerning complementation in finite lattices.In: Contributions to General Algebra 12 (D. Dorninger et al., eds.), Proceedings of the 58th workshop on general algebra "58. Arbeitstagung Allgemeine Algebra", Vienna, Austria, June 3-6, 1999, Verlag Johannes Heyn, Klagenfurt, 2000, pp. 145-154. MR 1777655
Reference: [Di45] DILWORTH R. R.: Lattices with unique complements.Trans. Amer. Math. Soc. 57 (1945), 123-154. Zbl 0060.06103, MR 0012263
Reference: [Du97] DÜNTSCH, L: A logic for rough sets.Theoret. Comput. Sci. 179 (1997), 427-436. MR 1454599
Reference: [Dz90] DZIK W.: Lattices adequate for intuitionistic predicate logic.In: Mathematical Logic. Proceedings of the Summer School and Conference Dedicated to the Ninetieth Anniversary of Arend Heyting (1898-1980), Held in Chaika, Bulgaria, September 13-23, 1988, Plenum Press, New York, 1990, pp. 293-297. MR 1084001
Reference: [Fr62] FRINK O.: Pseudo-complements in semi-lattices.Duke Math. J. 29 (1962), 505-514. Zbl 0114.01602, MR 0140449
Reference: [Hi02] HINTIKKA J.: Quantum logic as a fragment of independence-friendly logic.J. Philos. Logic 31 (2002), 197-209. Zbl 1011.03049, MR 1917265
Reference: [GK02] GANTER B.-KWUIDA L.: Representable Weak Dicomplementations on Finite Lattices.Contributions to General Algebra 14, Verlag Johannes Heyn, Klagenfurt, 2004. Zbl 1043.06010, MR 2059565
Reference: [GW99] GANTER B.-WILLE R.: Formal Concept Analysis.Mathematical Foundations, Springer, Berlin, 1999. Zbl 0909.06001, MR 1707295
Reference: [Gl29] GLIVENKO V.: Sur quelques points de la logique de M. Brouwer.Bulletin Acad. Bruxelles 15 (1929), 183-188.
Reference: [KAL83] KALMBACH G.: Othomodular Lattices.London Math. Soc. Monogr. 18, Academic Press Inc. (London) Ltd., London, 1983.
Reference: [Ka72] KATRIŇÁK T.: Über eine Konstruktion der distributiven pseudokomplementätren Verbände.Math. Nachr. 53 (1972). MR 0316334
Reference: [Ka73] KATRIŇÁK T.: The structure of distributive double p-algebras.Regularity and congruences, Algebra Universalis 3 (1992), 238-246. MR 0332598
Reference: [KM83] KATRIŇÁK T.-MEDERLY P.: Constructions of p-algebras.Algebra Universalis 17 (1983), 288-316. Zbl 0536.06004, MR 0729938
Reference: [Kw04] KWUIDA L.: Dicomplemented Lattices.A Contextual Generalization of Boolean Algebras, Shaker Verlag, Aachen, 2004. Zbl 1129.06006
Reference: [La71] LAKSER H.: The structure of pseudocomplemented distributive lattices.I: Subdirect decomposition, Trans. Amer. Math. Soc. 156 (1971), 335-342. Zbl 0244.06011, MR 0274358
Reference: [Sa88] SALIІ V. V.: Lattices with Unique Complements.Transl. Math. Monogr. 69, Amer. Math. Soc, Providence, RI, 1988. MR 0931777
Reference: [StЗб] STONE M. H.: The theory of representations for Boolean algebras.Trans. Amer. Math. Soc. 40 (1936), 37-111. Zbl 0014.34002, MR 1501865
Reference: [Ur79] URQUHART A.: Lattices with a dual homomorphic operation.Studia Logica 38 (1979), 201-209. Zbl 0425.06008, MR 0544616
Reference: [WІ82] WILLE R.: Restructuring lattice theory: an approach based on hierarchies of concepts.In: Ordered Sets (I. Rival, ed.), D. Reidel Publishing Company, Dordrecht-Boston-London, 1982, pp. 445-470. Zbl 0491.06008, MR 0661303
Reference: [WiOO] WILLE R.: Boolean concept logic.In: Conceptual Structures: Logical, Linguistic, and Computational Issues. 8th International Conference, ICCS 2000, Darmstadt, Germany, August 14-18, 2000. Proceedings (B. Ganter, G. W. Mineau, eds.), Lecture Notes in Artificial Intelligence 1867, Springer, Heidelberg, 2000, pp. 317-331. Zbl 0973.03035


Files Size Format View
MathSlov_56-2006-2_2.pdf 1.214Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo