Previous |  Up |  Next

Article

Title: Nonlinear boundary value problems at resonance for differential equations in Banach spaces (English)
Author: Przeradzki, Bogdan
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 45
Issue: 2
Year: 1995
Pages: 139-153
.
Category: math
.
MSC: 34B15
MSC: 34G20
idZBL: Zbl 0836.34065
idMR: MR1357070
.
Date available: 2009-09-25T11:05:42Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/130609
.
Reference: [1] CESARI L.: Functional analysis, nonlinear differential equations and the alternative method.In: Nonlinear Functional Analysis and Differential Equations (L. Cesari, R. Kannan, J.D. Schuur, eds.), Marcel Dekker Inc., New York, 1976, pp. 1-198. MR 0487630
Reference: [2] DALECKIǏ J. L., KREǏN M. G.: Stability of Solutions of Differential Equations in Banach Spaces.(Russian), Nauka, Moscov, 1970. MR 0352638
Reference: [3] DEFIGUEIREDO D. G.: On the range of nonlinear operators with linear asymptotes which are not invertible.Comment. Math. Univ. Carolin. 15 (1974), 415-428. MR 0365254
Reference: [4] DRÁBEK P.: Landesman-Lazer condition and nonlinearities with linear growth.Czechoslovak Math. J. 40(115) (1990), 70-87. MR 1037351
Reference: [5] DUGUNDJI J., GRANAS A.: Fixed Point Theory.Vol. I, PWN, Warsaw, 1981.
Reference: [6] FUČÍK S.: Solvability of Nonlinear Equations and Boundary Value Problems.D. Reidel Publ. Comp., Dordrecht, 1980. MR 0620638
Reference: [7] FURI M.-PERA P.: An elementary approach to boundary value problems at resonance.Nonlinear Anal. 4 (1980), 1081-1089. Zbl 0454.47054, MR 0591301
Reference: [8] IANNACCI R., NKASHAMA M. N.: Nonlinear two-point boundary value problems at resonance without Landesman-Lazer condition.Proc. Amer. Math. Soc. 106 (1989), 943-952. Zbl 0684.34025, MR 1004633
Reference: [9] KANNAN R.: Perturbation methods for nonlinear problems at resonance.In: Nonlinear Functional Analysis ... (see [1]) pp. 209-226. Zbl 0356.34057, MR 0492478
Reference: [10] LANDESMAN E. M., LAZER A. C.: Nonlinear perturbations of linear elliptic boundary value problems at resonance.J. Math. Mech. 19 (1970), 609-623. Zbl 0193.39203, MR 0267269
Reference: [11] MAWHIN J.: Topological degree methods in nonlinear boundary value problems.In: Regional Conf. Series in Math. 40, Amer. Math. Soc., Providence R.I., 1979. Zbl 0414.34025, MR 0525202
Reference: [12] PRZERADZKI B.: An abstract version of the resonance theorem.Ann. Polon. Math. 53 (1991), 35-43. Zbl 0746.47043, MR 1110659
Reference: [13] PRZERADZKI B.: Operator equations at resonance with unbounded nonlinearities.Preprint. Zbl 0881.47045, MR 1404067
Reference: [14] PRZERADZKI B.: A new continuation method for the study of nonlinear equations at resonance.J. Math. Anal. Appl. 180 (1993), 553-565. Zbl 0807.34029, MR 1251875
Reference: [15] PRZERADZKI B.: A note on solutions of semilinear equations at resonance in a cone.Ann. Polon. Math. 58 (1993), 95-103. Zbl 0776.34035, MR 1215764
Reference: [16] PRZERADZKI B.: Three methods for the study of semilinear equations at resonance.Colloq. Math. 66 (1993), 109-129. Zbl 0828.47054, MR 1242650
Reference: [17] WILLIAMS S. A.: A sharp sufficient condition for solution of a nonlinear elliptic boundary value problem.J. Differential Equations 8 (1970), 580-586. Zbl 0209.13003, MR 0267267
.

Files

Files Size Format View
MathSlov_45-1995-2_5.pdf 699.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo