Previous |  Up |  Next

Article

Title: On squares of complementary graphs (English)
Author: Nebeský, Ladislav
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 30
Issue: 3
Year: 1980
Pages: 247-249
.
Category: math
.
MSC: 05C45
idZBL: Zbl 0455.05044
idMR: MR587251
.
Date available: 2009-09-25T09:08:08Z
Last updated: 2012-07-31
Stable URL: http://hdl.handle.net/10338.dmlcz/130715
.
Reference: [1] BEHZAD M., CHARTRAND G.: Introduction to the Theory of Gгaphs.Allyn and Bacon, Boston 1971. MR 0432461
Reference: [2] CHARTRAND G., HOBBS A. M., JUNG H. A., NASH-WILLIAMS C. St. J. A.: The square of a block is hamiltonian connected.J. Comb. Theory 16B, 1974, 290-292. Zbl 0277.05129, MR 0345865
Reference: [3] FAUDREE R. J., SCHELP R. H.: The squaгe of a block is stгongly path connected.J. Comb. Theory 20B, 1976, 47-61. MR 0424609
Reference: [4] FLEISCHNER H.: The squaгe of every two-connected graph is hamiltonian.J. Comb. Theory 16B, 1974, 29-34. MR 0332573
Reference: [5] FLEISCHNER H.: In the squaгe of graphs, hamiltonicity and pancyclicity, hamiltonian connectedness and panconnectedness are equivaient concepts.Monatshefte Math. 82, 1976, 125-149. MR 0427135
Reference: [6] FLEISCHNER H., HOBBS A. M.: A necessary condition foг the square of a graph to be hamiltonian.J. Comb. Theory 19, 1975, 97-118. MR 0414433
Reference: [7] HARARY F.: Graph Theory.Addison-Wesley, Reading (Mass.) 1969. Zbl 0196.27202, MR 0256911
Reference: [8] HOBBS A. M.: The square of a block is vertex pancyclic.J. Comb. Theory 20B, 1976, 1-4. Zbl 0321.05135, MR 0416980
Reference: [9] NEBESKÝ L.: A theoгem on hamiltonian line graphs.Comment. Math. Univ. Carolinae 14, 1973, 107-111. MR 0382068
Reference: [10] NEBESKÝ L.: On pancyclic line graphs.Czechoslovak Mat. J. 28 (103), 1978, 650-655. Zbl 0379.05045, MR 0506438
Reference: [11] NEUMANN F.: On a certain ordering of the vertices of a tгee.Časopis pěst. mat. 89, 1964, 323-339. MR 0181587
.

Files

Files Size Format View
MathSlov_30-1980-3_5.pdf 345.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo