Title:
|
On squares of complementary graphs (English) |
Author:
|
Nebeský, Ladislav |
Language:
|
English |
Journal:
|
Mathematica Slovaca |
ISSN:
|
0139-9918 |
Volume:
|
30 |
Issue:
|
3 |
Year:
|
1980 |
Pages:
|
247-249 |
. |
Category:
|
math |
. |
MSC:
|
05C45 |
idZBL:
|
Zbl 0455.05044 |
idMR:
|
MR587251 |
. |
Date available:
|
2009-09-25T09:08:08Z |
Last updated:
|
2012-07-31 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/130715 |
. |
Reference:
|
[1] BEHZAD M., CHARTRAND G.: Introduction to the Theory of Gгaphs.Allyn and Bacon, Boston 1971. MR 0432461 |
Reference:
|
[2] CHARTRAND G., HOBBS A. M., JUNG H. A., NASH-WILLIAMS C. St. J. A.: The square of a block is hamiltonian connected.J. Comb. Theory 16B, 1974, 290-292. Zbl 0277.05129, MR 0345865 |
Reference:
|
[3] FAUDREE R. J., SCHELP R. H.: The squaгe of a block is stгongly path connected.J. Comb. Theory 20B, 1976, 47-61. MR 0424609 |
Reference:
|
[4] FLEISCHNER H.: The squaгe of every two-connected graph is hamiltonian.J. Comb. Theory 16B, 1974, 29-34. MR 0332573 |
Reference:
|
[5] FLEISCHNER H.: In the squaгe of graphs, hamiltonicity and pancyclicity, hamiltonian connectedness and panconnectedness are equivaient concepts.Monatshefte Math. 82, 1976, 125-149. MR 0427135 |
Reference:
|
[6] FLEISCHNER H., HOBBS A. M.: A necessary condition foг the square of a graph to be hamiltonian.J. Comb. Theory 19, 1975, 97-118. MR 0414433 |
Reference:
|
[7] HARARY F.: Graph Theory.Addison-Wesley, Reading (Mass.) 1969. Zbl 0196.27202, MR 0256911 |
Reference:
|
[8] HOBBS A. M.: The square of a block is vertex pancyclic.J. Comb. Theory 20B, 1976, 1-4. Zbl 0321.05135, MR 0416980 |
Reference:
|
[9] NEBESKÝ L.: A theoгem on hamiltonian line graphs.Comment. Math. Univ. Carolinae 14, 1973, 107-111. MR 0382068 |
Reference:
|
[10] NEBESKÝ L.: On pancyclic line graphs.Czechoslovak Mat. J. 28 (103), 1978, 650-655. Zbl 0379.05045, MR 0506438 |
Reference:
|
[11] NEUMANN F.: On a certain ordering of the vertices of a tгee.Časopis pěst. mat. 89, 1964, 323-339. MR 0181587 |
. |