Previous |  Up |  Next

Article

Title: On $\varphi $-convergence and $\varphi $-density (English)
Author: Kováč, Eugen
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 55
Issue: 3
Year: 2005
Pages: 329-351
.
Category: math
.
MSC: 40A05
MSC: 40D05
MSC: 40G99
idZBL: Zbl 1113.40002
idMR: MR2181010
.
Date available: 2009-09-25T14:26:39Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/130870
.
Reference: [1] BROWN T. C.-FREEDMAN A. R.: The uniform density of sets of integers and Fermaťs last theorem.C. R. Math. Rеp. Acad. Sci. Canada 11 (1990), 1-6. MR 1043085
Reference: [2] CONNOR J. S.: The statistical convergence and strong p-Cesàro convergence of sequences.Analysis (Munich) 8 (1988), 47-63. MR 0954458
Reference: [3] ERDÖS P.: Solutions of advanced problems: $\Phi$-convergence.Amеr. Math. Monthly 85 (1978), 122-123. MR 1538623
Reference: [4] FASТ H.: Sur la convergence statistique.Colloq. Math. 2 (1951), 241-244. MR 0048548
Reference: [5] HARDY G. H.: Divergent Series.Clarеdon Prеss, Oxford, 1949. Zbl 0032.05801, MR 0030620
Reference: [6] KOSTYRKO P.-ŠALÁT T.-WILCIŃSKY W.: $I$-convergence.Real Anal. Exchange 26 (2000-01), 669-686. Zbl 1199.40026, MR 1844385
Reference: [7] KOVÁČ E.: Various Types of Convergence, $\varphi$-Convergence.Master Thesis, FMPI, Comenius University, Bratislava, 2001. (Slovak).
Reference: [8] KOVÁČ E.: On $\varphi$-Convergence and $\varphi$-Densities of Sets of Integers.Rigorous Thesis, FMPI, Comenius University, Bratislava, 2002.
Reference: [9] NIVEN I.-ZUCKERMAN H. S.: An Introduction to the Theory of Numbers.(4th ed.), John Wiley, New York-London-Sydney, 1967.
Reference: [10] PETERSEN G. M.: Regular Matrix Transformations.McGraw-Hill Publ. Comp., New York-Toronto-Sydney, 1966. Zbl 0159.35401, MR 0225045
Reference: [11] ŠALÁT: On statisticaly convergent sequences of real numbers.Math. Slovaca 30 (1980), 139-150. MR 0587239
Reference: [12] SCHOENBERG I. J.: The integrability of certain functions and related summability methods.Amer. Math. Monthly 66 (1959), 361-375. Zbl 0089.04002, MR 0104946
Reference: [13] SТEINHAUS H.: Quelques remarques sur la généralisation de la notion de limite.Prace Matematyczno-Fizyczne 22 (1911), 121-134. (Polish)
.

Files

Files Size Format View
MathSlov_55-2005-3_8.pdf 1.882Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo