Title:
|
Existence results for implicit differential equations (English) |
Author:
|
Fečkan, Michal |
Language:
|
English |
Journal:
|
Mathematica Slovaca |
ISSN:
|
0139-9918 |
Volume:
|
48 |
Issue:
|
1 |
Year:
|
1998 |
Pages:
|
35-42 |
. |
Category:
|
math |
. |
MSC:
|
34A09 |
MSC:
|
47H05 |
MSC:
|
47H11 |
idZBL:
|
Zbl 0942.34005 |
idMR:
|
MR1635231 |
. |
Date available:
|
2009-09-25T11:27:31Z |
Last updated:
|
2012-08-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/130877 |
. |
Reference:
|
[1] BERGER M. S.: Nonlinearity and Functional Analysis.Academic Press, New York, 1977. Zbl 0368.47001, MR 0488101 |
Reference:
|
[2] BERKOVITS J.-MUSTONEN V.: An extension of Leray-Schauder degree and applications to nonlinear wave equations.Differential Integral Equations 3 (1990), 945-963. Zbl 0724.47024, MR 1059342 |
Reference:
|
[3] BIELAWSKI R.-GORNIEWICZ L.: A fixed point index approach to some differential equations.In: Proc. Conf. Topological Fixed Point Theory and Appl. (Boju Jiang, Ed.). Lecture Notes in Math. 1411, Springer-Verlag, New York, 1989, pp. 9-14. Zbl 0685.55001, MR 1031778 |
Reference:
|
[4] DEIMLING K.: Nonlinear Functional Analysis.Springer-Verlag, Berlin, 1985. Zbl 0559.47040, MR 0787404 |
Reference:
|
[5] ERBE L. H.-KRAWCEWICZ W.-KACZYNSKI T.: Solvability of two-point boundary value problems for systems of nonlinear differential equations of the form y" = 9(t,y,y'>y").Rocky Mountain J. Math. 20 (1990), 899-907. MR 1096559 |
Reference:
|
[6] FEČKAN M.: Nonnegative solutions of nonlinear integral equations.Comment. Math. Univ. Carolin. 36 (1995), 615-627. Zbl 0840.45007, MR 1378685 |
Reference:
|
[7] FEČKAN M.: On the existence of solutions of nonlinear equations.Proc. Amer. Math. Soc. 124 (1996), 1733-1742. Zbl 0861.47045, MR 1327010 |
Reference:
|
[8] FRIGON M.-KACZYNSKI T.: Boundary value problems for systems of implicit differential equations.J. Math. Anal. Appl. 179 (1993), 317-326. Zbl 0799.34023, MR 1249822 |
Reference:
|
[9] PETRYSHYN W. V.: Solvability of various boundary value problems for the equation x" = f(t,x,x',xn) - y.Pacific J. Math. 122 (1986), 169-195. MR 0825230 |
Reference:
|
[10] PETRYSHYN W. V.-YU Z. S.: On the solvability of an equation describing the periodic motions of a satellite in its elliptic orbit.Nonlinear Anal. 9 (1985), 969-975. Zbl 0581.70024, MR 0804562 |
Reference:
|
[11] PETRYSHYNW V.-YU Z. S.: Solvability of Neumann bv problems for nonlinear second-order odes which need not be solvable for the highest-order derivative.J. Math. Anal. Appl. 91 (1983), 244-253. MR 0688543 |
Reference:
|
[12] RICCERI B.: On the Cauchy problem for the differential equation f(t,x,x',\ldots, x^{(k)}) = 0$.Glasgow Math. J. 33 (1991), 343-348. MR 1127526 |
Reference:
|
[13] SCHNEIDER K. R.: Existence and approximation results to the Cauchy problem for a class of differential-algebraic equations.Z. Anal. Anwendungen 10 (1991), 375-384. Zbl 0772.34003, MR 1155617 |
Reference:
|
[14] WEBB J. R. L.-WELSH S. C.: Existence and uniqueness of initial value problems for a class of second-order differential equations.J. Differential Equations 82 (1989), 314-321. Zbl 0691.34005, MR 1027971 |
. |