Previous |  Up |  Next

Article

Title: The height of the first Stiefel-Whitney class of any nonorientable real flag manifold (English)
Author: Lörinc, Juraj
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 53
Issue: 1
Year: 2003
Pages: 91-95
.
Category: math
.
MSC: 57R19
MSC: 57R20
idZBL: Zbl 1051.57037
idMR: MR1964207
.
Date available: 2009-09-25T14:12:50Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/131212
.
Reference: [1] BOREL A.: La cohomologie mod 2 de certains espaces homogènes.Comment. Math. Helv. 27 (1953), 165-197. Zbl 0052.40301, MR 0057541
Reference: [2] ILORI S. A.-AJAYI D. O.: The height of the first Stiefel-Whitney class of the real flag manifolds.Indian J. Pure Appl. Math. 36 (2000), 621-624. Zbl 0964.57028, MR 1780312
Reference: [3] KORBAŠ J.: Vector fields on real flag manifolds.Ann. Global Anal. Geom. 3 (1985), 173-184. Zbl 0579.57017, MR 0809636
Reference: [4] KORBAŠ J.-LÖRINC J.: On the $\mathbb Z$-cohomology cup-length of real flag manifolds.(In preparation).
Reference: [5] STEENROD N.: The Topology of Fibre Bundles.Princeton Univ. Press, Princeton, NJ, 1951. Zbl 0054.07103, MR 0039258
Reference: [6] STONG R. E.: Cup products in Grassmannians.Topology Appl. 13 (1982), 103-113. Zbl 0469.55005, MR 0637432
Reference: [7] SWITZER R.: Algebraic Topology - Homotopy and Homology.Springer, Berlin, 1975. Zbl 0305.55001, MR 0385836
.

Files

Files Size Format View
MathSlov_53-2003-1_8.pdf 434.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo