[1] ASHRAFI A. R.-SAHRAEI H.: 
On finite groups whose every normal subgroup is a union of the same number of conjugacy classes. Vietnam J. Math. 30 (2002), 289-294. 
MR 1933567 | 
Zbl 1018.20026[2] ASHRAFI A. R.-SAHRAEI H.: 
Subgroups which are a union of a given number of conjugacy classes. In: Groups, St. Andrews 2001, Oxford University, Oxford, 2001. 
MR 2051512 | 
Zbl 1067.20033[3] BERKOVICH, YA. G.-ZHMUD E.: 
Characters of Finite Groups. Part 2. Transl. Math. Monographs 181, Amer. Math. Soc, Providence, RI, 1999. 
MR 1650707[4] COLLINS M. J.: 
Representations and Characters of Finite Groups. Cambridge University Press, Cambridge, 1990. 
MR 1050762 | 
Zbl 0703.20001[5] CONWAY J. H.-CURTIS R. T.-NORTON S. P.-PARKER R. A.-WILSON R. A.: 
Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups. Clarendon Press, Oxford, 1985. 
MR 0827219 | 
Zbl 0568.20001[6] HERZOG M.: 
On finite simple groups of order divisible by three primes only. J. Algebra 10 (1968), 383-388. 
MR 0233881[7] GORENSTEIN D.: 
Finite Simple Groups. An Introduction to Their Classification. Plenum, New York-London, 1982. 
MR 0698782 | 
Zbl 0483.20008[9] ISAACS I. M.: 
Character Theory of Finite Groups. Pure Appl. Math. 69, Academic Press, New York-San Francisco-London, 1976. 
MR 0460423 | 
Zbl 0337.20005[10] RIESE, UDO-SHAHABI M. A.: 
Subgroups which are the union of four conjugacy classes. Comm. Algebra 29 (2001), 695-701. 
MR 1841992[11] ROBINSON, DEREK J. S.: 
A Course in the Theory of Groups. (2nd ed.). Grad. Texts in Math. 80, Springer-Verlag, New York, 1996. 
MR 1357169[12] SAHRAEI H.: Subgroups which are a Union of Conjugacy Classes. M.Sc. Thesis, University of Kashan, 2000.
[13] SCHONERT M., al.: GAP: Groups, Algorithms and Programming. Lehrstuhl fur Mathematik, RWTH, Aachen, 1992.
[14] SHAHRYARI M.-SHAHABI M. A.: 
Subgroups which are the union of two conjugacy classes. Bull. Iranian Math. Soc. 25 (1999), 59-71. 
MR 1771804 | 
Zbl 0957.20020[15] SHAHRYARI M.-SHAHABI M. A.: 
Subgroups which are the union of three conjugate classes. J. Algebra 207 (1998), 326-332. 
MR 1643118 | 
Zbl 0913.20014[16] SHI, WUJIE-WENZE YANG: A new characterization of A5 and the finite groups in which every non-identity element has prime order. J. Southwest Teachers College 9 (1984), 36-40. (Chinese)
[17] SHI, WUJIE: 
The quantitative structure of groups and related topics. In: Group Theory in China. Dedicated to Hsio-Fu Tuan on the Occasion of His 82nd Birthday (Zhe-Xian Wan, Sheng-Ming Shi, eds.), Kluwer Academic Publishers. Math. Appl., Dordrecht, 1996, pp. 163-181. 
MR 1447204[18] SHI, WUJIE-YANG C.: A class of special finite groups. Chinese Sci. Bull. 37 (1992), 252-253.
[19] SHI, WUJIE: A class of special minimal normal subgroups. J. Southwest Teachers College 9 (1984), 9-13.
[20] WANG JING: 
A special class of normal subgroups. J. Chengdu Univ. Sci. Tech. 4 (1987), 115-119. 
MR 1028900 | 
Zbl 0671.20022