Title:
|
On $5$- and $6$-decomposable finite groups (English) |
Author:
|
Ashrafi, Ali Reza |
Author:
|
Zhao, Yaoqing |
Language:
|
English |
Journal:
|
Mathematica Slovaca |
ISSN:
|
0139-9918 |
Volume:
|
53 |
Issue:
|
4 |
Year:
|
2003 |
Pages:
|
373-383 |
. |
Category:
|
math |
. |
MSC:
|
20D05 |
MSC:
|
20D10 |
MSC:
|
20D60 |
MSC:
|
20E34 |
MSC:
|
20E45 |
idZBL:
|
Zbl 1080.20019 |
idMR:
|
MR2025470 |
. |
Date available:
|
2009-09-25T14:15:58Z |
Last updated:
|
2012-08-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/131538 |
. |
Reference:
|
[1] ASHRAFI A. R.-SAHRAEI H.: On finite groups whose every normal subgroup is a union of the same number of conjugacy classes.Vietnam J. Math. 30 (2002), 289-294. Zbl 1018.20026, MR 1933567 |
Reference:
|
[2] ASHRAFI A. R.-SAHRAEI H.: Subgroups which are a union of a given number of conjugacy classes.In: Groups, St. Andrews 2001, Oxford University, Oxford, 2001. Zbl 1067.20033, MR 2051512 |
Reference:
|
[3] BERKOVICH, YA. G.-ZHMUD E.: Characters of Finite Groups.Part 2. Transl. Math. Monographs 181, Amer. Math. Soc, Providence, RI, 1999. MR 1650707 |
Reference:
|
[4] COLLINS M. J.: Representations and Characters of Finite Groups.Cambridge University Press, Cambridge, 1990. Zbl 0703.20001, MR 1050762 |
Reference:
|
[5] CONWAY J. H.-CURTIS R. T.-NORTON S. P.-PARKER R. A.-WILSON R. A.: Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups.Clarendon Press, Oxford, 1985. Zbl 0568.20001, MR 0827219 |
Reference:
|
[6] HERZOG M.: On finite simple groups of order divisible by three primes only.J. Algebra 10 (1968), 383-388. MR 0233881 |
Reference:
|
[7] GORENSTEIN D.: Finite Simple Groups. An Introduction to Their Classification.Plenum, New York-London, 1982. Zbl 0483.20008, MR 0698782 |
Reference:
|
[8] HUPPERT B.: Endliche Gruppen.Springer-Verlag, Berlin, 1967. Zbl 0217.07201, MR 0224703 |
Reference:
|
[9] ISAACS I. M.: Character Theory of Finite Groups.Pure Appl. Math. 69, Academic Press, New York-San Francisco-London, 1976. Zbl 0337.20005, MR 0460423 |
Reference:
|
[10] RIESE, UDO-SHAHABI M. A.: Subgroups which are the union of four conjugacy classes.Comm. Algebra 29 (2001), 695-701. MR 1841992 |
Reference:
|
[11] ROBINSON, DEREK J. S.: A Course in the Theory of Groups.(2nd ed.). Grad. Texts in Math. 80, Springer-Verlag, New York, 1996. MR 1357169 |
Reference:
|
[12] SAHRAEI H.: Subgroups which are a Union of Conjugacy Classes.M.Sc. Thesis, University of Kashan, 2000. |
Reference:
|
[13] SCHONERT M., al.: GAP: Groups, Algorithms and Programming.Lehrstuhl fur Mathematik, RWTH, Aachen, 1992. |
Reference:
|
[14] SHAHRYARI M.-SHAHABI M. A.: Subgroups which are the union of two conjugacy classes.Bull. Iranian Math. Soc. 25 (1999), 59-71. Zbl 0957.20020, MR 1771804 |
Reference:
|
[15] SHAHRYARI M.-SHAHABI M. A.: Subgroups which are the union of three conjugate classes.J. Algebra 207 (1998), 326-332. Zbl 0913.20014, MR 1643118 |
Reference:
|
[16] SHI, WUJIE-WENZE YANG: A new characterization of A5 and the finite groups in which every non-identity element has prime order.J. Southwest Teachers College 9 (1984), 36-40. (Chinese) |
Reference:
|
[17] SHI, WUJIE: The quantitative structure of groups and related topics.In: Group Theory in China. Dedicated to Hsio-Fu Tuan on the Occasion of His 82nd Birthday (Zhe-Xian Wan, Sheng-Ming Shi, eds.), Kluwer Academic Publishers. Math. Appl., Dordrecht, 1996, pp. 163-181. MR 1447204 |
Reference:
|
[18] SHI, WUJIE-YANG C.: A class of special finite groups.Chinese Sci. Bull. 37 (1992), 252-253. |
Reference:
|
[19] SHI, WUJIE: A class of special minimal normal subgroups.J. Southwest Teachers College 9 (1984), 9-13. |
Reference:
|
[20] WANG JING: A special class of normal subgroups.J. Chengdu Univ. Sci. Tech. 4 (1987), 115-119. Zbl 0671.20022, MR 1028900 |
. |