Title:
|
Polynomials of the form $g(x\sp k)$ and pseudoprimes with respect to linear recurring sequences (English) |
Author:
|
Marko, František |
Language:
|
English |
Journal:
|
Mathematica Slovaca |
ISSN:
|
0139-9918 |
Volume:
|
42 |
Issue:
|
5 |
Year:
|
1992 |
Pages:
|
621-639 |
. |
Category:
|
math |
. |
MSC:
|
11B37 |
MSC:
|
11R09 |
MSC:
|
12F05 |
idZBL:
|
Zbl 0770.11046 |
idMR:
|
MR1202178 |
. |
Date available:
|
2009-09-25T10:44:15Z |
Last updated:
|
2012-08-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/131568 |
. |
Reference:
|
[1] ADAMS W., SHANKS D.: Strong primality tests that are not sufficient.Math. Comp. 39 (1982), 255-300. Zbl 0492.10005, MR 0658231 |
Reference:
|
[2] CASSELS J. W. S., FROHLICH A.: Algebraic Number Theory.Academic Press, London, 1967. MR 0215665 |
Reference:
|
[3] HASSE H.: Bencht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper., Jahresber. Deutsch. Math.-Verein. 35 (1926), 1-55, (Addendum, ibid. 36 (1927), 233-311). |
Reference:
|
[4] JAKUBEC S., NEMOGA K.: On a conjecture concerning sequences of the third order.Math. Slovaca 36 (1986), 85-89. Zbl 0583.10007, MR 0832373 |
Reference:
|
[5] MARKO P.: Schinzel's conjecture H and divisibility in abelian linear recurring sequences.Colloq. Math. LIX (1990), 1-7. Zbl 0715.11008 |
Reference:
|
[6] MARKO F.: Pseudoprimes with respect to linear recurring sequences.(Slovak), Thesis, Bratislava, 1991. |
Reference:
|
[7] NARKIEWICZ W.: Elementary and Analytic Theory of Algebraic Numbers.Polish Scientific Publishers, Warszawa, 1974. Zbl 0276.12002, MR 0347767 |
Reference:
|
[8] PRACHAR K.: Primzahlverteilung.Springer Verlag, Berlin-Gottingen-Heidelberg, 1957. Zbl 0080.25901, MR 0087685 |
Reference:
|
[9] SCHINZEL A.: Selected Topics on Polynomials.University of Michigan Press, Ann Arbor, 1982. Zbl 0487.12002, MR 0649775 |
Reference:
|
[10] SCHINZEL A.: Abelian binomials, power residues and exponential congruences.Acta Arith. 32 (1977), 245-274, (Addendum, ibid. 36 (1980), pp.101-104). Zbl 0409.12029, MR 0429819 |
. |