Previous |  Up |  Next

Article

Title: Convergence preserving permutations of $\Bbb N$ and Fréchet's space of permutations of $\Bbb N$ (English)
Author: Červeňanský, Jaroslav
Author: Šalát, Tibor
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 49
Issue: 2
Year: 1999
Pages: 189-199
.
Category: math
.
MSC: 40A05
MSC: 54A10
idZBL: Zbl 0957.40001
idMR: MR1696942
.
Date available: 2009-09-25T11:36:21Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/131885
.
Reference: [1] AGNEW R. P.: On rearrangements of series.Bull. Amer. Math. Soc. 46 (1940), 797-799. Zbl 0024.25902, MR 0002635
Reference: [2] AGNEW R. P.: Permutations preserving convergence of series.Proc. Amer. Math. Soc. 6 (1995), 563-564. MR 0071559
Reference: [3] HOZO I.-MILLER H. I.: On Rieman's theorem about conditionally convergent series.Mat. Vesnik 38 (1986), 279-283. MR 0870948
Reference: [4] KNIPERS L.-NIEDERREITER H.: Uniform Distribution of Sequences.John Wiley, New York-London-Sydney-Toronto, 1974. MR 0419394
Reference: [5] KURATOWSKI, C: Topologie I.PWN, Warszava, 1958.
Reference: [6] LÁSZLÓ V.-ŠALÁT T.: Uniformly distributed sequences of positive integers in Baire's space.Math. Slovaca 41 (1991), 277-281. Zbl 0757.11023, MR 1126664
Reference: [7] LEVI F. W.: Rearrangements of convergent series.Duke Math. J. 13 (1946), 579-585. MR 0019135
Reference: [8] PÁL L.: On a problem of theory of series.Mat. Lapok 12 (1961), 38-43. (Hungarian) MR 0145232
Reference: [9] PLEASANTS P. A. B.: Rearrangements that preserve convergence.J. London Math. Soc. (2) 15 (1977), 134-142. Zbl 0344.40001, MR 0432464
Reference: [10] ŠALÁT T.: Baire's space of permutations of N and rearrangements of series.(To appear). Zbl 1007.54032
Reference: [11] SENGUPTA H. M.: On rearrangements of series.Proc. Amer. Math. Soc. 1 (1950), 71-75. MR 0032786
Reference: [12] SENGUPTA H. M.: Rearrangements of series.Proc. Amer. Math. Soc. 7 (1956), 347-350. Zbl 0074.04404, MR 0078476
Reference: [13] SCHAEFER P.: Sum-preserving rearrangements of infinite series.Amer. Math. Monthly 88 (1981), 33-40. Zbl 0455.40007, MR 0619416
Reference: [14] STOUT Q. F.: On Levi's duality between permutations and convergent series.J. London Math. Soc. (2) 34 (1986), 67-80. Zbl 0633.40004, MR 0859149
Reference: [15] TKADLEC J.: Construction of some non-a-porous sets of real line.Real. Anal. Exchange 9 (1983-84), 473-482. MR 0766073
Reference: [16] ZAJÍČEK L.: Sets of $\sigma$-porosity and sets of $\sigma$-porosity $(q)$.Časopis Pěst. Mat. 101 (1976), 350-359. Zbl 0341.30026, MR 0457731
Reference: [17] ZAJICEK L.: Porosity and $\sigma$-porosity.Real Anal. Exchange 13 (1987-88), 314-350. Zbl 0666.26003, MR 0943561
.

Files

Files Size Format View
MathSlov_49-1999-2_6.pdf 690.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo