Previous |  Up |  Next

Article

Title: Lattice uniformities on orthomodular structures (English)
Author: Avallone, Anna
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 51
Issue: 4
Year: 2001
Pages: 403-419
.
Category: math
.
MSC: 06B30
MSC: 06C15
MSC: 28B10
idZBL: Zbl 1015.28014
idMR: MR1864109
.
Date available: 2009-09-25T11:53:56Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/131921
.
Reference: [A$_1$] AVALLONE A.: Liapunov theorem for modular functions.Internat. J. Theoгet. Phys. 34 (1995), 1197-1204. Zbl 0841.28007, MR 1353662
Reference: [A$_2$] AVALLONE A.: Nonatomic vector-valued modular functions.Annal. Soc. Math. Polon. Ser. I: Comment. Math. 39 (1999), 37-50. Zbl 0987.28012, MR 1739014
Reference: [A-B-C] AVALLONE A.-BARBIERI G.-CILIA R.: Control and separating points of modular functions.Math. Slovaca 49 (1999), 155-182. Zbl 0965.28004, MR 1696950
Reference: [A-D] AVALLONE A.-DE SIMONE A.: Extensions of modular functions on orthomodular lattices.Ital. J. Pure Appl. Math. 9 (2001), 109-122. MR 1842373
Reference: [A-L] AVALLONE A.-LEPELLERE M. A.: Modular functions: Uniform boundedness and compactness.Rend. Circ. Mat. Palermo (2) 47 (1998), 221-264. Zbl 0931.28009, MR 1633479
Reference: [A-W] AVALLONE A.-WEBER H.: Lattice uniformities generated by filters.J. Math. Anal. Appl. 209 (1997), 507-528. Zbl 0907.06015, MR 1474622
Reference: [B-W] BARBIERI G.-WEBER H.: A topological approach to the study of fuzzy measures.In: Functional Analysis and Economic Theory, Springer, Samos, 1996, pp. 17-46. MR 1730117
Reference: [B-L-W] BARBIERI G.-LEPELLERE M. A.-WEBER H.: The Hahn decomposition theorem for fuzzy measures and applications.Fuzzy Sets and Systems (To appear). Zbl 0977.28013, MR 1809398
Reference: [B-F] BENNETT M. K.-FOULIS D. J.: Effect algebras and unsharp quantum logics.Found. Phys. 24 (1994), 1331-1352. Zbl 1213.06004, MR 1304942
Reference: [C-K$_1$] CHOVANEC F.-KÔPKA F.: D-posets.Math. Slovaca 44 (1994), 21-34. Zbl 0789.03048, MR 1290269
Reference: [C-K$_2$] CHOVANEC F.-KÔPKA F.: D-lattices.Intern. J. Theoret. Phys. 34 (1995), 1297-1302. Zbl 0840.03046, MR 1353674
Reference: [D-D-P] DE LUCIA P.-DVUREČENSKI A.-PAP E.: On a decomposition theorem and its applications.Math. Japonica 44 (1996), 145-164. Zbl 0886.28012, MR 1402810
Reference: [D-P] DE LUCIA P.-PAP E.: Nikodym convergence theorem for uniform space-valued functions defined on D-poset.Math. Slovaca 45 (1995), 367-376. MR 1387053
Reference: [D] DREWNOWSKI L.: Topological rings of sets, continuous set functions, integration I, II.Bull. Polish. Acad. Sci. Math. 20 (1972), 269-286. MR 0306432
Reference: [F-T$_1$] FLEISCHER I.-TRAYNOR T.: Equivalence of group-valued measures on an abstract lattice.Bull. Polish. Acad. Sci. Math. 28 (1980), 549-556. Zbl 0514.28004, MR 0628641
Reference: [F-T] FLEISCHER L.-TRAYNOR T.: Group-valued modular functions.Algebra Univeгsalis 14 (1982), 287-291. Zbl 0458.06004, MR 0654397
Reference: [F-G-P] FOULIS D. J.-GREECHIE R. J.-PULMANNOVÁ S.: The center of an effect algebra.Order 12 (1995), 91-106. Zbl 0846.03031, MR 1336539
Reference: [G] GRAZIANO M. G.: Uniformities of Fréchet-Nikodym type on Vitali spaces.Semigroup Forum (To appear). Zbl 0966.28008, MR 1839217
Reference: [K] KALMBACH G.: Orthomodular Lattices.London Math. Soc. Monographs 18, Academic Press Inc, London, 1983. Zbl 0528.06012, MR 0689129
Reference: [L] LIPECKI Z.: Extensions of additive set functions with values in a topological group.Bull. Polish. Acad. Sci. Math. 22 (1974), 19-27. Zbl 0275.28013, MR 0349947
Reference: [P$-1$] PALKO V.: Topological difference posets.Math. Slovaca 47 (1997), 211-220. Zbl 1018.06501, MR 1796327
Reference: [P$_2$] PAP E.: Null-Additive Set Functions.Kluwer Academic Publ, Dordrecht, 1995. Zbl 0968.28010, MR 1368630
Reference: [P-P] PTÁK P.-PULMANNOVÁ S.: Orthomodular Structures as Quantum Logics.Kluwer Acad. Publ., Dordrecht, 1991. Zbl 0743.03039, MR 1176314
Reference: [P$_3$] PULMANNOVÁ S.: On connection among some orthomodular structures.Demostratio Math. 30 (1997), 313-328. MR 1469597
Reference: [R-N] RIEČAN B.-NEUBRUNN T.: Integral, Measure and Ordering.Dordrecht, Kluwer Acad. Publ., 1997. Zbl 0916.28001, MR 1489521
Reference: [R] RIEČANOVÁ Z.: A topology on a quantum logic induced by a measure.In: Proceed. Conf. Topology and Measure V, Wissensch Beitr, Greifswald, 1988, pp. 126-130. MR 1029570
Reference: [W$_1] WEBER H.: Group-and vector-valued-s-bounded contents.In: Lecture Notes in Math. 1089, Springer, New York, 1984, pp. 181-198. Zbl 0552.28011, MR 0786697
Reference: [W$_2$] WEBER H.: Uniform lattices I: A generalization of topological Riesz space and topological Boolean rings; Uniform lattices II.Ann. Mat. Pura Appl. 160; 165 (1991; 1993), 347-370; 133-158. MR 1163215
Reference: [W$_3$] WEBER H.: Metrization of uniform lattices.Czechoslovak Math. J. 43 (1993), 271-280. Zbl 0818.06006, MR 1211749
Reference: [W$_4$] WEBER H.: Lattice uniformities and modular functions on orthomodular lattices.Order 12 (1995), 295-305. Zbl 0834.06013, MR 1361614
Reference: [W$_5$] WEBER H.: On modular functions.Funct. Approx. Comment. Math. 24 (1996), 35-52. Zbl 0887.06011, MR 1453447
Reference: [W$_6$] WEBER H.: Valuations on complemented lattices.Intern. J. Theoret. Phys. 34 (1995), 1799-1806. Zbl 0843.06005, MR 1353726
Reference: [W$_7$] WEBER H.: Complemented uniform lattices.Topology Appl. 105 (2000), 47-64. Zbl 1121.54312, MR 1761086
Reference: [W$_8$] WEBER H.: Two extension theorems. Modular functions on complemented lattices.Preprint. Zbl 0998.06006, MR 1885457
.

Files

Files Size Format View
MathSlov_51-2001-4_5.pdf 1.005Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo