Title:
|
Note on hyperbolic partial differential equations (English) |
Author:
|
Rzepecki, Bogdan |
Language:
|
English |
Journal:
|
Mathematica Slovaca |
ISSN:
|
0139-9918 |
Volume:
|
31 |
Issue:
|
3 |
Year:
|
1981 |
Pages:
|
243-250 |
. |
Category:
|
math |
. |
MSC:
|
35A35 |
MSC:
|
35L10 |
idZBL:
|
Zbl 0482.35051 |
idMR:
|
MR621915 |
. |
Date available:
|
2009-09-25T09:15:00Z |
Last updated:
|
2012-07-31 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/132406 |
. |
Related article:
|
http://dml.cz/handle/10338.dmlcz/136276 |
. |
Reference:
|
[1] BIELECKI A. : Une remarque sur la méthode de Banach-Cacciopoli-Tikhonov dans la théorie des équations différentielles ordinaires.Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronorn. Phys. 4, 1956, 261-264. MR 0082073 |
Reference:
|
[2] BIELECKI A. : Une remarque sur l'application de la méthode de Banach-Cacciopoli-Tikhonov dans la théorie de l'équation s=f(x, y, z, p, q).Bull. Acad. Polon. Sci., Ser. Sci. Math. Astronom. Phys. 4, 1956, 256-268. |
Reference:
|
[3] ĎURIKOVlČ V.: On the uniqueness of solutions and the convergence of successive approximations in the Darboux problem for certain differential equations of the type uxy - f(x, y, u, ux, uy).Spisy přírodov. fak. Univ. J. E. Purkyně v Brně 4, 1968, 223-236. |
Reference:
|
[4] ĎURIKOVlČ V. : On the existence and the uniqueness of solutions and on the convergence of successive approximations in the Darboux problem for certain differential equations of the type $u_{x_1\cdots x_n}=f(x_1,\cdots,x_n,u,\cdots,u_{x_{l_1}\cdots x_{l_j}},\cdots)$.Čas. pro pěstov. mat. 95, 1970, 178-195. MR 0450758 |
Reference:
|
[5] ĎURIKOVlČ V. : On the uniqueness of solutions and on the convergence of successive approximations for certain initial problems of equations of the higher orders.Mat. Čas. 20, 1970, 214-224. MR 0352668 |
Reference:
|
[6] ĎURIKOVIČ V. : The convergence of successive approximations for boundary value problems of hyperbolic equations in the Banach space.Mat. Čas. 21, 1971, 33-54. Zbl 0209.12302, MR 0355387 |
Reference:
|
[7] KOOI O. : Existentie-, eenduidigheids- en convergrntie stellingen in de theore der gewone differentiaal vergelijkingen.Thesis V. U., Amsterdam 1956. |
Reference:
|
[8] KURATOWSKI C. : Topologie. V. I.Warszawa 1952. |
Reference:
|
[9] LUXEMBURG W. A. J. : On the convergence of successive approximations in the theory of ordinary differential equations II.Indag. Math. 20, 1958, 540-546. Zbl 0084.07703, MR 0124554 |
Reference:
|
[10] LUXEMBURG W. A. J. : On the convergence of successive approximations in the theory of ordinary differential equations III.Nieuw Archief Vor Wiskunde 6, 1958, 93-98. Zbl 0085.30201, MR 0124555 |
Reference:
|
[11] PALCZEWSKI B., PAWELSKI W. : Some remarks on the uniqueness of solutions of the Darboux problem with conditions of the Krasnosielski-Krein type.Ann. Polon. Math. 14. 1964, 97-100. Zbl 0132.07208, MR 0161013 |
Reference:
|
[12] ROSENBLATT A. : Über die Existenz von Integralen gewöhnlichen Differentialgleichungen.Archiv for Mathem. Astr. och Fysik 5(2), 1909, 1-4. |
Reference:
|
[13] RZEPECKI B. : On the Banach principle and its application to the theory of differential equations.Comm. Math. 19, 1977, 355-363. Zbl 0355.34001, MR 0478124 |
Reference:
|
[14] RZEPECKI B. : Remarks in connection with a paper of S. CZERWIK "On a differential equation with deviating argument".Comm. Math. 22 (to appear). Zbl 0483.34046, MR 0577690 |
Reference:
|
[15] RZEPECKI B. : A generalization of Banach's contraction theorem.Bull. Acad. Polon. Sci., Ser. Sci. Math. Astronom. Phys. 26 (to appear). Zbl 0421.47032, MR 0515618 |
Reference:
|
[16] RZEPECKI B. : On some classes of differential equations.Publ. Inst. Math, (to appear). Zbl 0415.34055, MR 0542839 |
Reference:
|
[17] WONG J. S. W. : On the convergence of successive approximations in the Darboux problem.Ann. Polon. Math. 17, 1966, 329-336. Zbl 0144.13704, MR 0188579 |
. |