Previous |  Up |  Next

Article

Title: Bounded dually residuated lattice ordered monoids as a generalization of fuzzy structures (English)
Author: Rachůnek, Jiří
Author: Slezák, Vladimír
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 56
Issue: 2
Year: 2006
Pages: 223-233
.
Category: math
.
MSC: 03B52
MSC: 03G25
MSC: 06D35
MSC: 06F05
idZBL: Zbl 1150.06015
idMR: MR2229343
.
Date available: 2009-09-25T14:31:34Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/133054
.
Reference: [1] CHANG C. C.: Algebraic analysis of many valued logic.Trans. Amer. Math. Soc. 88 (1958), 467-490. MR 0094302
Reference: [2] CIGNOLI R. L. O.-D'OTTAVIANO I. M. L.-MUNDICI D.: Algebraic Foundations of Many-Valued Reasoning.Kluwer Acad. Publ., Dordrecht-Boston-London, 2000. Zbl 0937.06009, MR 1786097
Reference: [3] CIGNOLI R.-TORRENS A.: Hájek basic fuzzy logic and Lukasiewicz infinite valued logic.Arch. Math. Logic 42 (2003), 361-370. Zbl 1025.03018, MR 2018087
Reference: [4] DI NOLA A.-GEORGESCU G.-IORGULESCU A.: Pseudo BL-algebras I.Mult.-Valued Log. 8 (2002), 673-714. Zbl 1028.06007, MR 1948853
Reference: [5] DI NOLA A.-GEORGESCU G.-IORGULESCU A.: Pseudo BL-algebras II.Mult.-Valued Log. 8 (2002), 715-750. Zbl 1028.06008, MR 1948854
Reference: [6] DVUREČENSKIJ A.-PULMANNOVÁ S.: New Trends in Quantum Structures.Kluwer Acad. Publ./Ister Science, Dordrecht/Bratislava, 2000. Zbl 0987.81005, MR 1861369
Reference: [7] GEORGESCU G.: Bosbach states on fuzzy structures.Soft Comput. 8 (2004), 217-230. Zbl 1081.06012
Reference: [8] GEORGESCU G.-IORGULESCU A.: Pseudo MV-algebras.Mult.-Valued Log. 6 (2001), 95-135. Zbl 1014.06008, MR 1817439
Reference: [9] HÁJEK P.: Metamathematics of Fuzzy Logic.Kluwer Acad. Publ., Amsterdam, 1998. Zbl 0937.03030, MR 1900263
Reference: [10] HÁJEK P.: Fuzzy logics with non-commutative conjunction.J. Logic Comput. 13 (2003), 469 479. MR 1999959
Reference: [11] KOVÁŘ T.: A General Theory of Dually Residuated Lattice Ordered Monoids.Ph.D. Thesis, Palacky Univ., Olomouc, 1996.
Reference: [12] KÜHR J.: Pseudo BL-algebras and DRI-monoids.Math. Bohem. 128 (2003), 199-208. MR 1995573
Reference: [13] KÜHR J.: Dually Residuated Lattice Ordered Monoids.Ph.D. Thesis, Palacky Univ., Olomouc, 2003. Zbl 1141.06014
Reference: [14] LAMBEK J.: Some lattice models of bilinear logic.Algebra Universalis 34 (1995), 541-550. Zbl 0840.03044, MR 1357483
Reference: [15] RACHŮNEK J.: A non-commutative generalization of MV-algebras.Czechoslovak Math. J. 52 (2002), 255-273. Zbl 1012.06012, MR 1905434
Reference: [16] RACHŮNEK J.: Prime spectra of non-commutative generalizations of MV-algebras.Algebra Universalis 48 (2002), 151-169. Zbl 1058.06015, MR 1929902
Reference: [17] RACHŮNEK J.-SLEZÁK V.: Negation in bounded commutative DRI-monoids.Czechoslovak Math. J. (To appear). MR 2291772
Reference: [18] SWAMY K. L. N.: Dually residuated lattice ordered semigroups.Math. Ann. 159 (1965), 105-114. Zbl 0138.02104, MR 0183797
.

Files

Files Size Format View
MathSlov_56-2006-2_7.pdf 514.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo