Title:
|
Bounded dually residuated lattice ordered monoids as a generalization of fuzzy structures (English) |
Author:
|
Rachůnek, Jiří |
Author:
|
Slezák, Vladimír |
Language:
|
English |
Journal:
|
Mathematica Slovaca |
ISSN:
|
0139-9918 |
Volume:
|
56 |
Issue:
|
2 |
Year:
|
2006 |
Pages:
|
223-233 |
. |
Category:
|
math |
. |
MSC:
|
03B52 |
MSC:
|
03G25 |
MSC:
|
06D35 |
MSC:
|
06F05 |
idZBL:
|
Zbl 1150.06015 |
idMR:
|
MR2229343 |
. |
Date available:
|
2009-09-25T14:31:34Z |
Last updated:
|
2012-08-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/133054 |
. |
Reference:
|
[1] CHANG C. C.: Algebraic analysis of many valued logic.Trans. Amer. Math. Soc. 88 (1958), 467-490. MR 0094302 |
Reference:
|
[2] CIGNOLI R. L. O.-D'OTTAVIANO I. M. L.-MUNDICI D.: Algebraic Foundations of Many-Valued Reasoning.Kluwer Acad. Publ., Dordrecht-Boston-London, 2000. Zbl 0937.06009, MR 1786097 |
Reference:
|
[3] CIGNOLI R.-TORRENS A.: Hájek basic fuzzy logic and Lukasiewicz infinite valued logic.Arch. Math. Logic 42 (2003), 361-370. Zbl 1025.03018, MR 2018087 |
Reference:
|
[4] DI NOLA A.-GEORGESCU G.-IORGULESCU A.: Pseudo BL-algebras I.Mult.-Valued Log. 8 (2002), 673-714. Zbl 1028.06007, MR 1948853 |
Reference:
|
[5] DI NOLA A.-GEORGESCU G.-IORGULESCU A.: Pseudo BL-algebras II.Mult.-Valued Log. 8 (2002), 715-750. Zbl 1028.06008, MR 1948854 |
Reference:
|
[6] DVUREČENSKIJ A.-PULMANNOVÁ S.: New Trends in Quantum Structures.Kluwer Acad. Publ./Ister Science, Dordrecht/Bratislava, 2000. Zbl 0987.81005, MR 1861369 |
Reference:
|
[7] GEORGESCU G.: Bosbach states on fuzzy structures.Soft Comput. 8 (2004), 217-230. Zbl 1081.06012 |
Reference:
|
[8] GEORGESCU G.-IORGULESCU A.: Pseudo MV-algebras.Mult.-Valued Log. 6 (2001), 95-135. Zbl 1014.06008, MR 1817439 |
Reference:
|
[9] HÁJEK P.: Metamathematics of Fuzzy Logic.Kluwer Acad. Publ., Amsterdam, 1998. Zbl 0937.03030, MR 1900263 |
Reference:
|
[10] HÁJEK P.: Fuzzy logics with non-commutative conjunction.J. Logic Comput. 13 (2003), 469 479. MR 1999959 |
Reference:
|
[11] KOVÁŘ T.: A General Theory of Dually Residuated Lattice Ordered Monoids.Ph.D. Thesis, Palacky Univ., Olomouc, 1996. |
Reference:
|
[12] KÜHR J.: Pseudo BL-algebras and DRI-monoids.Math. Bohem. 128 (2003), 199-208. MR 1995573 |
Reference:
|
[13] KÜHR J.: Dually Residuated Lattice Ordered Monoids.Ph.D. Thesis, Palacky Univ., Olomouc, 2003. Zbl 1141.06014 |
Reference:
|
[14] LAMBEK J.: Some lattice models of bilinear logic.Algebra Universalis 34 (1995), 541-550. Zbl 0840.03044, MR 1357483 |
Reference:
|
[15] RACHŮNEK J.: A non-commutative generalization of MV-algebras.Czechoslovak Math. J. 52 (2002), 255-273. Zbl 1012.06012, MR 1905434 |
Reference:
|
[16] RACHŮNEK J.: Prime spectra of non-commutative generalizations of MV-algebras.Algebra Universalis 48 (2002), 151-169. Zbl 1058.06015, MR 1929902 |
Reference:
|
[17] RACHŮNEK J.-SLEZÁK V.: Negation in bounded commutative DRI-monoids.Czechoslovak Math. J. (To appear). MR 2291772 |
Reference:
|
[18] SWAMY K. L. N.: Dually residuated lattice ordered semigroups.Math. Ann. 159 (1965), 105-114. Zbl 0138.02104, MR 0183797 |
. |