Previous |  Up |  Next

Article

Title: The $3x+1$ problem, generalized Pascal triangles and cellular automata (English)
Author: Korec, Ivan
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 42
Issue: 5
Year: 1992
Pages: 547-563
.
Category: math
.
MSC: 11B83
MSC: 68Q80
MSC: 68R15
idZBL: Zbl 0773.11016
idMR: MR1202173
.
Date available: 2009-09-25T10:43:29Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/133269
.
Reference: [1] CLONEY T., GOLES C. E., VICHNIAC G. Y.: The 3x + 1 problem: A quasi-cellular automaton.Complex Systems 1 (1987), 349-360. Zbl 0662.10010, MR 0891956
Reference: [2] CULIK H. K., GRUSKA J., SALOMAA A.: Systolic trellis automata.Internat. J. Comput. Math. 15 and 16 (1984), 195 -212 and 3-22. Zbl 0571.68042, MR 0754266
Reference: [3] CULIK H. K., HURD L. P., YU S.: Computation theoretic aspects of cellular automata.Phys. D 45 (1990), 357-378. Zbl 0729.68052, MR 1094881
Reference: [4] KOREC I.: Generalized Pascal triangles.Decidability results, Acta Math. Univ. Comen. XLVI-XLVII (1985), 93-130. Zbl 0607.05002, MR 0872334
Reference: [5] KOREC I.: Generalized Pascal triangles.(Slovak), DrSc. Thesis, UK Bratislava. 1984.
Reference: [6] KOREC I.: Generalized Pascal triangles.In: Proceedings of the V Universal Algebra Symposium, Turawa, Poland, May 1988 (K. Halkowska and S. Stawski, eds.), World Scientific, Singapore, 1989, pp. 198-218. MR 1084405
Reference: [7] KUIPERS L. NIEDERREITEIR H.: Uniform distribution of sequences.J. Wiley & Sons, New York, 1974. MR 0419394
Reference: [8] LAGARIAS J. C.: The 3x + 1 problem and its generalizations.Amer. Math. Monthly 92 (1985), 3-23. Zbl 0566.10007, MR 0777565
Reference: [9] WOLFRAM S.: Computation theory of cellular automata.Comm. Math. Phys. 96 (1984), 15-57. Zbl 0587.68050, MR 0765959
.

Files

Files Size Format View
MathSlov_42-1992-5_3.pdf 1.451Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo