Title:
|
Multilinear operators on $C(K,X)$ spaces (English) |
Author:
|
Villanueva, Ignacio |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
54 |
Issue:
|
1 |
Year:
|
2004 |
Pages:
|
31-54 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Given Banach spaces~ $X$, $Y$ and a compact Hausdorff space~ $K$, we use polymeasures to give necessary conditions for a multilinear operator from $C(K,X)$ into~ $Y$ to be completely continuous (resp.~ unconditionally converging). We deduce necessary and sufficient conditions for~ $X$ to have the Schur property (resp.~ to contain no copy of~ $c_0$), and for~ $K$ to be scattered. This extends results concerning linear operators. (English) |
Keyword:
|
completely continuous |
Keyword:
|
unconditionally converging |
Keyword:
|
multilinear operators |
Keyword:
|
$C(K,X)$ spaces |
MSC:
|
46B25 |
MSC:
|
46G10 |
MSC:
|
46G25 |
MSC:
|
47B07 |
MSC:
|
47H60 |
idZBL:
|
Zbl 1050.46032 |
idMR:
|
MR2040217 |
. |
Date available:
|
2009-09-24T11:09:23Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/133372 |
. |
Reference:
|
[1] R. M. Aron, C. Hervés and M. Valdivia: Weakly continuous mappings on Banach spaces.J. Funct. Anal. 52 (1983), 189–204. MR 0707203, 10.1016/0022-1236(83)90081-2 |
Reference:
|
[2] F. Bombal: Medidas vectoriales y espacios de funciones continuas.Publicaciones del Departamento de Análisis Matemático, Sección 1, No. 3, Fac. de Matemáticas, Universidad Complutense de Madrid, 1984. |
Reference:
|
[3] F. Bombal and P. Cembranos: Characterization of some classes of operators on spaces of vector valued continuous functions.Math. Proc. Cambridge Phil. Soc. 97 (1985), 137–146. MR 0764502, 10.1017/S0305004100062678 |
Reference:
|
[4] F. Bombal, M. Fernández and I. Villanueva: Unconditionally converging multilinear operators.Math. Nachr. 226 (2001), 5–15. MR 1839399, 10.1002/1522-2616(200106)226:1<5::AID-MANA5>3.0.CO;2-I |
Reference:
|
[5] F. Bombal and I. Villanueva: Multilinear operators in spaces of continuous functions.Funct. Approx. Comment. Math. XXVI (1998), 117–126. MR 1666611 |
Reference:
|
[6] F. Bombal and I. Villanueva: Polynomial sequential continuity on $C(K,E)$ spaces.J. Math. Anal. Appl. 282 (2003), 341–355. MR 2000348, 10.1016/S0022-247X(03)00161-6 |
Reference:
|
[7] J. Brooks and P. Lewis: Linear operators and vector measures.Trans. Amer. Math. Soc. 192 (1974), 39–162. MR 0338821, 10.1090/S0002-9947-1974-0338821-5 |
Reference:
|
[8] F. Cabello, R. García and I. Villanueva: Regularity and extension of multilinear forms on Banach spaces.Extracta Mathematicae (2000). |
Reference:
|
[9] P. Cembranos and J. Mendoza: Banach Spaces of Vector-valued Functions. Lecture Notes in Math. Vol. 1676.Springer, Berlin, 1997. MR 1489231, 10.1007/BFb0096765 |
Reference:
|
[10] J. Diestel: Sequences and Series in Banach Spaces.Graduate Texts in Math. Vol. 92, Springer, Berlin, 1984. MR 0737004 |
Reference:
|
[11] J. Diestel, H. Jarchow and A. Tonge: Absolutely Summing Operators. Cambridge Stud. Adv. Math. Vol. 43.Cambridge Univ. Press, Cambridge, 1995. MR 1342297 |
Reference:
|
[12] N. Dinculeanu: Vector Measures.Pergamon Press, 1967. Zbl 0647.60062, MR 0206190 |
Reference:
|
[13] N. Dinculeanu and M. Muthiah: Bimeasures in Banach spaces.Preprint. MR 1849394 |
Reference:
|
[14] I. Dobrakov: On representation of linear operators on $ C_0 (T , X )$.Czechoslovak Math. J. 21(96) (1971), 13–30. MR 0276804 |
Reference:
|
[15] I. Dobrakov: On integration in Banach spaces. VIII (polymeasures).Czechoslovak Math. J. 37(112) (1987), 487–506. Zbl 0688.28002, MR 0904773 |
Reference:
|
[16] I. Dobrakov: Representation of multilinear operators on $\times C_0 (T_i , X_i )$, I.Atti Sem. Mat. Fis. Univ. Modena XXXIX (1991), 131–138. MR 1111763 |
Reference:
|
[17] M. Fernández Unzueta: Unconditionally convergent polynomials in Banach spaces and related properties.Extracta Math. 12 (1997), 305–307. MR 1627517 |
Reference:
|
[18] M. González and J. Gutiérrez: Orlicz-Pettis polynomials on Banach spaces.Monats. Math. 129 (2000), 341–350. 10.1007/s006050050080 |
Reference:
|
[19] J. Gutiérrez and I. Villanueva: Aron-Berner extensions and Banach space properties.Preprint. |
Reference:
|
[20] B. Jefferies: Radon polymeasures.Bull. Austral. Math. Soc. 32 (1985), 207–215. Zbl 0577.28002, MR 0815364, 10.1017/S0004972700009904 |
Reference:
|
[21] B. Jefferies and W. Ricker: Integration with respect to vector valued radon polymeasures.J. Austral. Math. Soc. (Series A) 56 (1994), 17–40. MR 1250991, 10.1017/S1446788700034716 |
Reference:
|
[22] H. E. Lacey: The Isometric Theory of Classical Banach Spaces.Springer-Verlag, 1974. Zbl 0285.46024, MR 0493279 |
Reference:
|
[23] P. Saab: Weakly compact, unconditionally converging, and Dunford-Pettis operators on spaces of vector-valued continuous functions.Math. Proc. Camb. Phil. Soc. 95 (1984), 101–108. Zbl 0537.46027, MR 0727084, 10.1017/S030500410006134X |
Reference:
|
[24] I. Villanueva: Representación de operadores multilineales en espacios de funciones continuas.PhD. Thesis, Universidad Complutense de Madrid, 1999. |
Reference:
|
[25] I. Villanueva: Completely continuous multilinear operators on $C(K)$ spaces.Proc. Amer. Math. Soc. 128 (1984), 793–801. MR 1670435, 10.1090/S0002-9939-99-05396-4 |
. |