Previous |  Up |  Next

Article

Title: The spectra of general differential operators in the direct sum spaces (English)
Author: Ibrahim, Sobhy El-sayed
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 1
Year: 2004
Pages: 9-29
Summary lang: English
.
Category: math
.
Summary: In this paper, the general ordinary quasi-differential expression $M_p$ of $n$-th order with complex coefficients and its formal adjoint $M_p^+$ on any finite number of intervals $I_p=(a_p,b_p)$, $p=1,\dots ,N$, are considered in the setting of the direct sums of $L_{w_p}^2(a_p,b_p)$-spaces of functions defined on each of the separate intervals, and a number of results concerning the location of the point spectra and the regularity fields of general differential operators generated by such expressions are obtained. Some of these are extensions or generalizations of those in a symmetric case in [1], [14], [15], [16], [17] and of a general case with one interval in [2], [11], [12], whilst others are new. (English)
Keyword: quasi-differential expressions
Keyword: essential spectra
Keyword: joint field of regularity
Keyword: regularly solvable operators
Keyword: direct sum spaces
MSC: 34A05
MSC: 34B24
MSC: 34B25
MSC: 34L05
MSC: 34L15
MSC: 47A10
MSC: 47A55
MSC: 47E05
idZBL: Zbl 1058.34110
idMR: MR2040216
.
Date available: 2009-09-24T11:09:15Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127862
.
Reference: [1] N. I.  Akhiezer and I. M.  Glazman: Theory of Linear Operators in Hilbert Space, Part  I, Part II.Frederich Ungar Publishing Co., New York, 1961, 1963.
Reference: [2] J.  Chaudhurim and W. N.  Everitt: On the spectrum of ordinary differential operators.Proc. Roy. Soc. Edinburgh 68A (1969), 95–119.
Reference: [3] D. E. Edmunds and W. D.  Evans: Spectral Theory and Differential Operators.Oxford University Press, 1987. MR 0929030
Reference: [4] W. D.  Evans: Regularly solvable extension of non-self-adjoint ordinary differential operators.Proc. Roy. Soc. Edinburgh 97A (1984), 79–95. MR 0751179
Reference: [5] W. D.  Evans and Sobhy  E.  Ibrahim: Boundary conditions for general ordinary differential operators and their adjoints.Proc. Roy. Soc. Edinburgh 114A (1990), 99–117. MR 1051610
Reference: [6] W. N. Everitt: Integrable square solutions of ordinary differential equations.Quart. J.  Math. (Oxford) 14 (1963), 170–180. Zbl 0123.05001, MR 0151660, 10.1093/qmath/14.1.170
Reference: [7] W. N.  Everitt and A.  Zettl: Generalized symmetric ordinary differential expressions  I, the general theory.Nieuw Arch. Wisk. 27 (1979), 363–397. MR 0553264
Reference: [8] W. N.  Everitt: Sturm Liouville differential operators in direct sum spaces.Rocky Mountain J. Math. 16 (1986), 497–516. Zbl 0624.34020, MR 0862277, 10.1216/RMJ-1986-16-3-497
Reference: [9] W. N.  Everitt and D.  Race: Some remarks on linear ordinary quasi-differential equations.Proc. London Math. Soc. 54 (1987), 300–320. MR 0872809
Reference: [10] W. N.  Everitt: Differential operators generated by a countable number of quasi-differential expressions on the real line.Proc. London Math. Soc. 61 (1992), 526–544.
Reference: [11] Sobhy E. Ibrahim: The spectra of well-posed operators.Proc. Roy. Soc. Edinburgh 125A (1995), 1331–1348. MR 1363006
Reference: [12] Sobhy E. Ibrahim: The point spectra and regularity fields of non-self-adjoint quasi-differential operators.Rocky Mountain J. Math. 25 (1995), 685–699. MR 1336556, 10.1216/rmjm/1181072243
Reference: [13] Sobhy E.  Ibrahim: On the essential spectra of regularly solvable operators in the direct sum spaces.Rocky Mountain J. Math. 29 (1999), 609–644. MR 1705477, 10.1216/rmjm/1181071653
Reference: [14] M. A.  Naimark: Linear Differential Operators, Part I, Part II.English Edition, Frederich Ungar Publishing Co., New York, 1967, 1968.
Reference: [15] D.  Race: On the location of the essential spectra and regularity fields of complex Sturm-Liouville operators.Proc. Royal Soc. of Edinburgh 85A (1980), 1–14. Zbl 0422.34027, MR 0566064
Reference: [16] D.  Race: On the essential spectra of linear $2n$-th order differential operators with complex coefficients.Proc. Roy. Soc. Edinburgh 92 (1982), 65–75. MR 0667125
Reference: [17] D.  Race: The theory of $J$-self-adjoint extensions of $J$-symmetric operators.J. Differential Equations 57 (1985), 258–274. MR 0788280, 10.1016/0022-0396(85)90080-4
Reference: [18] M. I.  Visik: On general boundary problems for elliptic differential operators.Amer. Math. Soc. 24 (1963), 107–172.
Reference: [19] A.  Zettl: Formally self-adjoint quasi-differential operators.Rocky Mountain J. Math. 5 (1975), 453–474. MR 0379976, 10.1216/RMJ-1975-5-3-453
.

Files

Files Size Format View
CzechMathJ_54-2004-1_2.pdf 367.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo