Previous |  Up |  Next

Article

Title: Bol-loops of order $3\cdot 2^n$ (English)
Author: Wagner, Daniel
Author: Wopperer, Stefan
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 46
Issue: 1
Year: 2007
Pages: 85-88
Summary lang: English
.
Category: math
.
Summary: In this article we construct proper Bol-loops of order $3\cdot 2^n$ using a generalisation of the semidirect product of groups defined by Birkenmeier and Xiao. Moreover we classify the obtained loops up to isomorphism. (English)
Keyword: bol-loop
Keyword: loop
Keyword: group
Keyword: semidirect product
MSC: 20N05
idZBL: Zbl 1143.20046
idMR: MR2387496
.
Date available: 2009-08-27T10:12:18Z
Last updated: 2012-05-04
Stable URL: http://hdl.handle.net/10338.dmlcz/133390
.
Reference: [1] Kiguradze I. T.: On Some Singular Boundary Value Problems for Ordinary Differential Equations. : Tbilisi Univ. Press, Tbilisi., 1975 (in Russian). MR 0499402
Reference: [2] Kiguradze I. T., Shekhter B. L.: Singular boundary value problems for second order ordinary differential equations.Itogi Nauki i Tekhniki Ser. Sovrem. Probl. Mat. Nov. Dost. 30 (1987), 105–201 (in Russian), translated in J. Soviet Math. 43 (1988), 2340–2417. Zbl 0631.34021, MR 0925830
Reference: [3] O’Regan D.: Upper and lower solutions for singular problems arising in the theory of membrane response of a spherical cap.Nonlinear Anal. 47 (2001), 1163–1174. Zbl 1042.34523, MR 1970727
Reference: [4] O’Regan D.: Theory of Singular Boundary Value Problems. : World Scientific, Singapore., 1994. MR 1286741
Reference: [5] Rachůnková I.: Singular mixed boundary value problem.J. Math. Anal. Appl. 320 (2006), 611–618. Zbl 1103.34009, MR 2225980
Reference: [6] Rachůnková I., Staněk S., Tvrdý M.: Singularities and Laplacians in Boundary Value Problems for Nonlinear Ordinary Differential Equations.Handbook of Differential Equations. Ordinary Differential Equations, Ed. by A. Cañada, P. Drábek, A. Fonda, Vol. 3., pp. 607–723, Elsevier, 2006.
Reference: [7] Wang M., Cabada A., Nieto J. J.: Monotone method for nonlinear second order periodic boundary value problems with Carathéodory functions.Ann. Polon. Math. 58, 3 (1993), 221–235. Zbl 0789.34027, MR 1244394
.

Files

Files Size Format View
ActaOlom_46-2007-1_9.pdf 327.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo