Previous |  Up |  Next

Article

Title: Ideals, congruences and annihilators on nearlattices (English)
Author: Chajda, Ivan
Author: Kolařík, Miroslav
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 46
Issue: 1
Year: 2007
Pages: 25-33
Summary lang: English
.
Category: math
.
Summary: By a nearlattice is meant a join-semilattice having the property that every principal filter is a lattice with respect to the semilattice order. We introduce the concept of (relative) annihilator of a nearlattice and characterize some properties like distributivity, modularity or $0$-distributivity of nearlattices by means of certain properties of annihilators. (English)
Keyword: nearlattice
Keyword: semilattice
Keyword: ideal
Keyword: congruence
Keyword: distributivity
Keyword: modularity
Keyword: $0$-distributivity
Keyword: annihilator
MSC: 06A12
MSC: 06C99
MSC: 06D99
idZBL: Zbl 1147.06002
idMR: MR2387490
.
Date available: 2009-08-27T10:22:01Z
Last updated: 2012-05-04
Stable URL: http://hdl.handle.net/10338.dmlcz/133392
.
Reference: [1] Abbott J. C.: Semi-boolean algebra.Mat. Vestnik 4 (1967), 177–198. Zbl 0153.02704, MR 0239957
Reference: [2] Beazer R.: Hierarchies of distributive lattices satisfying annihilator conditions.J. London Math. Soc. 11 (1975), 216–222. Zbl 0335.06008, MR 0387141
Reference: [3] Chajda I., Kolařík M.: A decomposition of homomorphic images of nearlattices.Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 45 (2006), 43–52. Zbl 1123.06002, MR 2321296
Reference: [4] Chajda I., Kolařík M.: Nearlattices.Discrete Math., to appear. Zbl 1151.06004, MR 2446101
Reference: [5] Cornish W. H.: The free implicative BCK-extension of a distributive nearlattice.Math. Japonica 27, 3 (1982), 279–286. Zbl 0496.03046, MR 0663155
Reference: [6] Cornish W. H., Noor A. S. A.: Standard elements in a nearlattice.Bull. Austral. Math. Soc. 26, 2 (1982), 185–213. Zbl 0523.06006, MR 0683652
Reference: [7] Davey B.: Some annihilator conditions on distributive lattices.Algebra Universalis 4 (1974), 316–322. Zbl 0299.06007, MR 0357261
Reference: [8] Davey B., Nieminen J.: Annihilators in modular lattices.Algebra Universalis 22 (1986), 154–158. Zbl 0613.06004, MR 0870463
Reference: [9] Grätzer G.: General Lattice Theory. : Birkhäuser Verlag., Basel, 1978. MR 0504338
Reference: [10] Halaš R.: Subdirectly irreducible distributive nearlattices.Math. Notes 7, 2 (2006), 141–146. Zbl 1120.06003, MR 2310273
Reference: [11] Hickman R.: Join algebras.Communications in Algebra 8 (1980), 1653–1685. Zbl 0436.06003, MR 0585925
Reference: [12] Mandelker M.: Relative annihilators in lattices.Duke Math. J. 40 (1970), 377–386. Zbl 0206.29701, MR 0256951
Reference: [13] Nieminen J.: The Jordan–Hölder chain condition and annihilators in finite lattices.Tsukuba J. Math. 14 (1990), 405–411. Zbl 0721.06008, MR 1085207
Reference: [14] Noor A. S. A., Cornish W. H.: Multipliers on a nearlattices.Commentationes Mathematicae Universitatis Carolinae (1986), 815–827. MR 0874675
Reference: [15] Scholander M.: Trees, lattices, order and betweenness.Proc. Amer. Math. Soc. 3 (1952), 369–381. MR 0048405
Reference: [16] Scholander M.: Medians and betweenness.Proc. Amer. Math. Soc. 5 (1954), 801–807. MR 0064749
Reference: [17] Scholander M.: Medians, lattices and trees.Proc. Amer. Math. Soc. 5 (1954), 808–812. MR 0064750
.

Files

Files Size Format View
ActaOlom_46-2007-1_3.pdf 390.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo