Previous |  Up |  Next

Article

Title: On structure space of $\Gamma$-semigroups (English)
Author: Chattopadhyay, S.
Author: Kar, S.
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 47
Issue: 1
Year: 2008
Pages: 37-46
Summary lang: English
.
Category: math
.
Summary: In this paper we introduce the notion of the structure space of $\Gamma $-semigroups formed by the class of uniformly strongly prime ideals. We also study separation axioms and compactness property in this structure space. (English)
Keyword: $\Gamma $-semigroup
Keyword: uniformly strongly prime ideal
Keyword: Noetherian $\Gamma $-semigroup
Keyword: hull-kernel topology
Keyword: structure space
MSC: 20M17
idZBL: Zbl 1170.20039
idMR: MR2482715
.
Date available: 2009-08-27T11:28:36Z
Last updated: 2012-05-04
Stable URL: http://hdl.handle.net/10338.dmlcz/133402
.
Reference: [1] Adhikari M. R., Das M. K.: Structure Spaces of Semirings.Bull. Cal. Math. Soc. 86 (1994), 313–317. Zbl 0821.16046, MR 1326227
Reference: [2] Dutta T. K., Chattopadhyay S.: On uniformly strongly prime $\Gamma $-semigroup.Analele Stiintifice Ale Universitatii “AL. I. CUZA” IASI Tomul LII, s.I, Math., 2006, f.2, 325–335. Zbl 1132.20041, MR 2341098
Reference: [3] Dutta T. K., Chattopadhyay S.: On Uniformly strongly prime $\Gamma $-semigroup (2).Accepted.
Reference: [4] Gillman L.: Rings with Hausdorff structure space.Fund. Math. 45 (1957), 1–16. MR 0092773
Reference: [5] Chattopadhyay S.: Right Orthodox $\Gamma $-semigroup.Southeast Asian Bull. of Mathematics 29 (2005), 23–30. Zbl 1066.20066, MR 2125891
Reference: [6] Chattopadhyay S.: Right inverse $\Gamma $-semigroup.Bull. Cal. Math. Soc 93, 6 (2001), 435–442. Zbl 1002.20042, MR 1908897
Reference: [7] Kohls C. W.: The space of prime ideals of a ring.Fund. Math. 45 (1957), 17–27. Zbl 0079.26302, MR 0100610
Reference: [8] Saha N. K.: On $\Gamma $-semigroup III.Bull. Cal. Math. Soc. 80 (1988), 1–12. Zbl 0652.20061, MR 0956997
Reference: [9] Sen M. K., Saha N. K.: On $\Gamma $-semigroup I.Bull. Cal. Math. Soc. 78 (1986), 180–186. Zbl 0601.20063, MR 0851844
Reference: [10] Sen M. K., Chattopadhyay S.: Semidirect Product of a Monoid and a $\Gamma $-semigroup.East-West J. of Math. 6, 2 (2004), 131–138. Zbl 1098.20052, MR 2225411
.

Files

Files Size Format View
ActaOlom_47-2008-1_4.pdf 459.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo