Previous |  Up |  Next

Article

Title: VNR rings, $\Pi$-regular rings and annihilators (English)
Author: Yue Chi Ming, Roger
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 50
Issue: 1
Year: 2009
Pages: 25-36
Summary lang: English
.
Category: math
.
Summary: Von Neumann regular rings, hereditary rings, semi-simple Artinian rings, self-injective regular rings are characterized. Rings which are either strongly regular or semi-simple Artinian are considered. Annihilator ideals and $\Pi$-regular rings are studied. Properties of WGP-injectivity are developed. (English)
Keyword: von Neumann regular
Keyword: $\Pi $-regular
Keyword: annihilators
Keyword: $p$-injective
Keyword: YJ-injective
Keyword: WGP-injective
Keyword: semi-simple Artinian
MSC: 16D40
MSC: 16D50
MSC: 16E50
MSC: 16P20
idZBL: Zbl 1203.16012
idMR: MR2562801
.
Date available: 2009-08-18T12:22:45Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/133412
.
Reference: [1] Armendariz E.P., Fisher J.W., Steinberg S.A.: Central localizations of regular rings.Proc. Amer. Math. Soc. 46 (1974), 315--321. Zbl 0267.16003, MR 0352164, 10.1090/S0002-9939-1974-0352164-0
Reference: [2] Baccella G.: Generalized $V$-rings and von Neumann regular rings.Rend. Sem. Mat. Univ. Padova 72 (1984), 117--133. Zbl 0547.16006, MR 0778337
Reference: [3] Bass H.: Finitistic dimension and homological generalization of semi-primary rings.Trans. Amer. Math. Soc. 95 (1960), 466--488. MR 0157984, 10.1090/S0002-9947-1960-0157984-8
Reference: [4] Chase S.U.: Direct product of modules.Trans. Amer. Math. Soc. 97 (1960), 457--473. MR 0120260, 10.1090/S0002-9947-1960-0120260-3
Reference: [5] Ding N.Q., Chen J.L.: Rings whose simple singular models are YJ-injective.Math. Japon. 40 (1994), 191--195. MR 1288035
Reference: [6] Faith C.: Algebra II: Ring Theory.Grundlehren Math. Wiss. 191 (1976). MR 0427349, 10.1007/978-3-642-65321-6
Reference: [7] Faith C.: Rings and things and a fine array of twentieth century associative algebra.AMS Math. Survey and Monographs 65 (1999). MR 1657671
Reference: [8] Goodearl K.R.: Ring Theory. Nonsingular Rings and Modules.Pure and Applied Mathematics, no. 33, Marcel Dekker, New York, 1976. Zbl 0336.16001, MR 0429962
Reference: [9] Goodearl K.R.: Von Neumann Regular Rings.Pitman, Boston, 1979. Zbl 0841.16008, MR 0533669
Reference: [10] Hirano Y.: On non-singular $p$-injective rings.Publ. Math. 38 (1994), 455--461.
Reference: [11] Jain S.K., Mohamed S.H., Singh S.: Rings in which every right ideal is quasiinjective.Pacific J. Math. 31 (1969), 73--79. MR 0251073, 10.2140/pjm.1969.31.73
Reference: [12] Jans J.P.: Projective injective modules.Pacific J. Math. 9 (1959), 1103--1108. Zbl 0231.16012, MR 0112904, 10.2140/pjm.1959.9.1103
Reference: [13] Kasch F.: Modules and Rings.London Mathematical Society Monographs, 17, Academic Press, London-New York, 1982. Zbl 0832.16002, MR 0667346
Reference: [14] Kim N.K., Nam S.B., Kim J.Y.: On simple singular GP-injective modules.Comm. Algebra 27 (1999), 2087--2096. Zbl 0923.16008, MR 1683853, 10.1080/00927879908826551
Reference: [15] Michler, G.O., Villamayor O.E.: On rings whose simple modules are injective.J. Algebra 25 (1973), 185--201. Zbl 0258.16023, MR 0316505, 10.1016/0021-8693(73)90088-4
Reference: [16] Nam S.B., Kim N.K., Kim J.Y.: On simple GP-injective modules.Comm. Algebra 23 (1995), 5437--5444. Zbl 0840.16006, MR 1363614, 10.1080/00927879508825543
Reference: [17] Posner E.C.: Prime rings satisfying a polynomial identity.Proc. Amer. Math. Soc. 11 (1960), 180--184. Zbl 0215.38101, MR 0111765, 10.1090/S0002-9939-1960-0111765-5
Reference: [18] Puninski G., Wisbauer R., Yousif M.F.: On $p$-injective rings.Glasgow Math. J. 37 (1995), 373--378. Zbl 0847.16005, MR 1355393, 10.1017/S0017089500031657
Reference: [19] Storrer H.H.: A note on quasi-Frobenius rings and ring epimorphism.Canad. Math. Bull. 12 (1969), 287--292. MR 0251075, 10.4153/CMB-1969-036-9
Reference: [20] Tuganbaev A.: Rings Close to Regular.Mathematics and its Applications, 545, Kluwer Academic Publishers, Dordrecht, 2002. Zbl 1120.16012, MR 1958361
Reference: [21] Tuganbaev A.: Max rings and $V$-rings.Handbook of Algebra, vol. 3, North-Holland, Amsterdam, 2003. Zbl 1080.16008, MR 2035106, 10.1016/S1570-7954(03)80071-2
Reference: [22] Wisbauer R.: Foundations of Module and Ring Theory.Gordon and Breach, New York, 1991. Zbl 0746.16001, MR 1144522
Reference: [23] Xue Wei Min: A note on $YJ$-injectivity.Riv. Mat. Univ. Parma (6) 1 (1998), 31--37. MR 1680954
Reference: [24] Yousif M.F.: On SI-modules.Math. J. Okayama Univ. 28 (1986), 133--146. MR 0885022
Reference: [25] Yue Chi Ming R.: A note on singular ideals.Tôhoku Math. J. 21 (1969), 337--342. Zbl 0164.34702, MR 0252444, 10.2748/tmj/1178242946
Reference: [26] Yue Chi Ming R.: On von Neumann regular rings.Proc. Edinburgh Math. Soc. 19 (1974), 89--91. MR 0342553
Reference: [27] Yue Chi Ming R.: On von Neumann regular rings II.Math. Scan. 39 (1976), 167--170. MR 0435131
Reference: [28] Yue Chi Ming R.: On annihilator ideals.Math. J. Okayama Univ. 19 (1976), 51--53. Zbl 0348.16008, MR 0435130
Reference: [29] Yue Chi Ming R.: On von Neumann regular rings III.Monatsh. Math. 86 (1978), 251--257. Zbl 0414.16006, MR 0517029, 10.1007/BF01659723
Reference: [30] Yue Chi Ming R.: On generalizations of $V$-rings and regular rings.Math. J. Okayama Univ. 20 (1978), 123--129. Zbl 0402.16014, MR 0519559
Reference: [31] Yue Chi Ming R.: On injective and p-injective modules.Riv. Mat. Univ. Parma (4) 7 (1981), 187--197. Zbl 0499.16015, MR 0671367
Reference: [32] Yue Chi Ming R.: On regular and continuous rings II.Kyungpook Math. J. 21 (1981), 171--178. Zbl 0516.16007, MR 0644587
Reference: [33] Yue Chi Ming R.: On quasi-Frobenius rings and Artinian rings.Publ. Inst. Math. (Beograd) 33 (47) (1983), 239--245. MR 0723453
Reference: [34] Yue Chi Ming R.: On regular rings and self-injective rings II.Glasnik Mat. 18 (38) (1983), 221--229. Zbl 0528.16006, MR 0733161
Reference: [35] Yue Chi Ming R.: On regular rings and Artinian rings II.Riv. Mat. Univ. Parma (4) 11 (1985), 101--109. Zbl 0611.16011, MR 0851520
Reference: [36] Yue Chi Ming R.: On von Neumann regular rings XI.Bull. Math. Soc. Sci. Math. Roumanie 30 (76) (1986), 371--379. Zbl 0608.16018, MR 0892874
Reference: [37] Yue Chi Ming R.: On injectivity and p-injectivity.J. Math. Kyoto Univ. 27 (1987), 439--452. Zbl 0655.16012, MR 0910229
Reference: [38] Yue Chi Ming R.: A note on injective rings.Hokkaido Math. J. 21 (1992), 231--238. Zbl 0777.16001, MR 1169790
Reference: [39] Yue Chi Ming R.: On p-injectivity and generalizations.Riv. Mat. Univ. Parma (5) 5 (1996), 183--188. Zbl 0877.16002, MR 1456411
Reference: [40] Yue Chi Ming R.: On YJ-injectivity and VNR rings.Bull. Math, Soc. Sci. Math. Roumanie 46 (94) (2003), 87--97. Zbl 1084.16501, MR 2097354
Reference: [41] Zelmanowitz J.: Injective hulls of torsionfree modules.Canad. J. Math. 27 (1971), 1094--1101. MR 0289567, 10.4153/CJM-1971-115-x
Reference: [42] Zhang J.L.: Fully idempotent rings whose every maximal left ideal is an ideal.Chinese Sci. Bull. 37 (1992), 1065--1068. MR 1321903
Reference: [43] Zhang J.L., Wu J.: Generalizations of principal injectivity.Algebra Colloq. 6 (1999), 277--282. Zbl 0949.16002, MR 1809647
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_50-2009-1_3.pdf 226.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo