Previous |  Up |  Next

Article

Title: Functional calculus for a class of unbounded linear operators on some non-archimedean Banach spaces (English)
Author: Attimu, Dodzi
Author: Diagana, Toka
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 50
Issue: 1
Year: 2009
Pages: 37-60
Summary lang: English
.
Category: math
.
Summary: This paper is mainly concerned with extensions of the so-called Vishik functional calculus for analytic bounded linear operators to a class of unbounded linear operators on $c_0$. For that, our first task consists of introducing a new class of linear operators denoted $W(c_0({J},\omega,\Bbb K))$ and next we make extensive use of such a new class along with the concept of convergence in the sense of resolvents to construct a functional calculus for a large class of unbounded linear operators. (English)
Keyword: non-archimedean Banach space
Keyword: Shnirelman integral
Keyword: spectrum
Keyword: unbounded linear operator
Keyword: functional calculus
MSC: 12G25
MSC: 26E30
MSC: 46S10
MSC: 47S10
idZBL: Zbl 1212.47125
idMR: MR2562802
.
Date available: 2009-08-18T12:22:51Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/133413
.
Reference: [1] Attimu D.: Linear operators on some non-archimedean Hilbert spaces and their spectral theory.PhD Thesis, Howard University, Washington DC, 2008. MR 2399075
Reference: [2] Attimu D., Diagana T.: Representation of bilinear forms in non-Archimedean Hilbert space by linear operators II.Comment. Math. Univ. Carolin. 48 (2007), 3 431--442. Zbl 1199.47334, MR 2374125
Reference: [3] Baker R.: A certain $p$-adic spectral theorem.arXiv.math /070353901 [MATH.FA] (2007).
Reference: [4] Conway J.B.: A Course in Functional Analysis.Graduate Texts in Mathematics 96, Springer, New York, 1985. Zbl 0706.46003, MR 0768926
Reference: [5] Davies E.B.: Spectral Theory and Differential Operators.Cambridge University Press, Cambridge, 1995. Zbl 0893.47004, MR 1349825
Reference: [6] Diagana T.: Towards a theory of some unbounded linear operators on $p$-adic Hilbert spaces and applications.Ann. Math. Blaise Pascal 12 (2005), 1 205--222. Zbl 1087.47061, MR 2126449, 10.5802/ambp.203
Reference: [7] Diagana T.: Erratum to: ``Towards a theory of some unbounded linear operators on $p$-adic Hilbert spaces and Applications".Ann. Math. Blaise Pascal 13 (2006), 105--106. MR 2233015, 10.5802/ambp.217
Reference: [8] Diagana T.: Representation of bilinear forms in non-archimedean Hilbert space by linear operators.Comment. Math. Univ. Carolin. 47 (2006), 4 695--705. Zbl 1150.47408, MR 2337423
Reference: [9] Diagana T.: An Introduction to Classical and $p$-adic Theory of Linear Operators and Applications.Nova Science Publishers, New York, 2006. Zbl 1118.47323, MR 2269328
Reference: [10] Diarra B., Ludkovsky S.: Spectral integration and spectral theory for non-Archimedean Banach spaces.Int. J. Math. Math. Sci. 31 (2002), 7 421--442. Zbl 0999.47063, MR 1926812, 10.1155/S016117120201150X
Reference: [11] Diarra B.: An Operator on Some Ultrametric Hilbert spaces.J. Anal. 6 (1998), 55--74. Zbl 0930.47049, MR 1671148
Reference: [12] Diarra B.: Geometry of the $p$-adic Hilbert spaces.preprint, 1999.
Reference: [13] Kalish G.: On $p$-adic Hilbert spaces.Ann. of Math. 48 (1947), 2 180--192. MR 0019227, 10.2307/1969224
Reference: [14] Kato T.: Perturbation Theory for Linear Operators.Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer, New York, 1966. Zbl 0836.47009, MR 0203473
Reference: [15] Khrennikov A.Y.: $p$-Adic Valued Distributions in Mathematical Physics.Mathematics and Its Applications, Vol. 309, Kluwer Academic, Dordrecht, 1994. Zbl 0833.46061, MR 1325924
Reference: [16] Koblitz N.: $p$-adic Analysis: a Short Course on Recent Work.Cambridge University Press, Cambridge, 1980. Zbl 0439.12011, MR 0591682
Reference: [17] Krasner M.: Prolongement analytique uniforme et multiforme dans les corps valués complets.Colloque. Int. CNRS 143, Paris, 1966, pp. 97--142. Zbl 0139.26202, MR 0204404
Reference: [18] Ochsenius H., Schikhof W.H.: Banach Spaces Over Fields with an Infinite Rank Valuation.$p$-adic Functional Analysis (Poznan, 1998), Marcel Dekker, New York, 1999, pp. 233--293. Zbl 0938.46056, MR 1703500
Reference: [19] van Rooij A.C.M.: Non-Archimedean Functional Analysis.Marcel Dekker Inc, New York, 1978. Zbl 0396.46061, MR 0512894
Reference: [20] Serre J.-P.: Endomorphismes complétement continus des espaces de Banach $p$-adiques.Inst. Hautes Études Sci. Publ. Math. 12 (1962), 69--85. MR 0144186, 10.1007/BF02684276
Reference: [21] Shnirel'man L.G.: On Functions in Normed, Algebraically Closed Fields.Izv. Akad. Nauk SSSR, Ser. Mat. 2 (1938), 5--6 487--498.
Reference: [22] Shamseddine K., Berz M.: Analytical properties of power series on Levi-Civita fields.Ann. Math. Blaise Pascal 12 (2005), 2 309--329. Zbl 1087.26020, MR 2182072, 10.5802/ambp.209
Reference: [23] Vishik M.: Non-Archimedean spectral theory.J. Soviet Math. 30 (1985), 2513--2554. MR 0770941, 10.1007/BF02249122
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_50-2009-1_4.pdf 311.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo