Previous |  Up |  Next

Article

Title: Moderate deviation principles for sums of i.i.d. random compact sets (English)
Author: Miao, Yu
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 50
Issue: 1
Year: 2009
Pages: 103-111
Summary lang: English
.
Category: math
.
Summary: We prove a moderate deviation principle for Minkowski sums of i.i.d. random compact sets in a Banach space. (English)
Keyword: moderate deviation
Keyword: random sets
MSC: 60D05
MSC: 60F10
idZBL: Zbl 1212.60005
idMR: MR2562807
.
Date available: 2009-08-18T12:23:26Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/133418
.
Reference: [1] Artstein Z., Vitale R.A.: A strong law of large numbers for random compact sets.Ann. Probability (1975), 3 879--882. Zbl 0313.60012, MR 0385966
Reference: [2] Chen X.: Probabilities of moderate deviations for independent random vectors in a Banach space.Chinese J. Appl. Prob. Stat. (1991), 7 24--32. MR 1204537
Reference: [3] Chen X.: Moderate deviations for $m$-dependent random variables with Banach space values.Statist. Probab. Lett. (1997), 35 123--134. Zbl 0887.60010, MR 1483265, 10.1016/S0167-7152(97)00005-9
Reference: [4] Cerf R.: Large deviations for sums of i.i.d. random compact sets.Proc. Amer. Math. Soc. (1999), 127 8 2431--2436. Zbl 0934.60017, MR 1487361
Reference: [5] Dembo A., Zeitouni O.: Large Deviations Techniques and Applications.second edition, Springer, New York, 1998. Zbl 0896.60013, MR 1619036
Reference: [6] Deuschel J.D., Stroock D.W.: Large Deviations.Pure and Applied Mathematics, 137, Academic Press, Boston, MA, 1989. Zbl 0791.60017, MR 0997938
Reference: [7] Dunford N., Schwartz J.T.: Linear Operators. Part I: General Theory.Interscience Publishers, New York-London, 1958. Zbl 0635.47001, MR 1009162
Reference: [8] Giné E., Hahn M.G., Zinn J.: Limit theorems for random sets: an application of probability in Banach space results.Probability in Banach Spaces IV (Oberwolfach, 1982), Springer, Berlin, 1983, pp. 112--135. MR 0707513
Reference: [9] Puri M.L., Ralescu D.A.: Limit theorems for random compact sets in Banach space.Math. Proc. Cambridge Philos. Soc. (1985), 97 151--158. Zbl 0559.60007, MR 0764504
Reference: [10] Rudin W.: Real and Complex Analysis.McGraw-Hill, New York, 1966. Zbl 1038.00002, MR 0210528
Reference: [11] Rudin W.: Functional Analysis.McGraw-Hill, New York, 1973. Zbl 0867.46001, MR 0365062
Reference: [12] Wu L.M.: An introduction to large deviations.in Several Topics in Stochastic Analysis (J.A. Yan, S. Peng, S. Fang and L. Wu, Eds.), pp. 225--336, Academic Press of China, Beijing, 1997 (in Chinese). Zbl 0575.60032
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_50-2009-1_9.pdf 209.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo