Title:
|
Addition theorems, $D$-spaces and dually discrete spaces (English) |
Author:
|
Alas, Ofelia T. |
Author:
|
Tkachuk, Vladimir V. |
Author:
|
Wilson, Richard G. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
50 |
Issue:
|
1 |
Year:
|
2009 |
Pages:
|
113-124 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A {\it neighbourhood assignment\/} in a space $X$ is a family $\Cal O= \{O_x:x\in X\}$ of open subsets of $X$ such that $x\in O_x$ for any $x\in X$. A set $Y\subseteq X$ is {\it a kernel of $\Cal O$\/} if $\Cal O(Y)=\bigcup\{O_x:x\in Y\}=X$. If every neighbourhood assignment in $X$ has a closed and discrete (respectively, discrete) kernel, then $X$ is said to be a $D$-space (respectively a dually discrete space). In this paper we show among other things that every GO-space is dually discrete, every subparacompact scattered space and every continuous image of a Lindelöf $P$-space is a $D$-space and we prove an addition theorem for metalindelöf spaces which answers a question of Arhangel'skii and Buzyakova. (English) |
Keyword:
|
neighbourhood assignment |
Keyword:
|
$D$-space |
Keyword:
|
dually discrete space |
Keyword:
|
discrete kernel |
Keyword:
|
scattered space |
Keyword:
|
paracompactness |
Keyword:
|
GO-space |
MSC:
|
54D20 |
MSC:
|
54G99 |
idZBL:
|
Zbl 1212.54074 |
idMR:
|
MR2562808 |
. |
Date available:
|
2009-08-18T12:23:33Z |
Last updated:
|
2013-09-22 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/133419 |
. |
Reference:
|
[1] Alas O.T., Junqueira L., Wilson R.G.: Dually discrete spaces.Topology Appl. 155 (2008), 13 1420--1425. Zbl 1169.54010, MR 2427413, 10.1016/j.topol.2008.04.003 |
Reference:
|
[2] Alas O.T., Sanchis M., Tkachenko M.G., Tkachuk V.V., Wilson R.G.: Irresolvable and submaximal spaces: homogeneity versus $\sigma$-discreteness and new ZFC examples.Topology Appl. 107 (2000), 259--273. Zbl 0984.54002, MR 1779814 |
Reference:
|
[3] Alas O.T., Tkachuk V.V., Wilson R.G.: Covering properties and neighbourhood assignments.Topology Proc. 30 1 (2006), 25--38. MR 2280656 |
Reference:
|
[4] Arhangel'skii A.V.: D-spaces and finite unions.Proc. Amer. Math. Soc. 132 7 (2004), 2163--2170. Zbl 1045.54009, MR 2053991, 10.1090/S0002-9939-04-07336-8 |
Reference:
|
[5] Arhangel'skii A.V., Buzyakova R.Z.: Addition theorems and $D$-spaces.Comment. Math. Univ. Carolin. 43 (2002), 653--663. Zbl 1090.54017, MR 2045787 |
Reference:
|
[6] Arhangel'skii A.V., Collins P.J.: On submaximal spaces.Topology Appl. 64 3 (1995), 219--241. MR 1342519, 10.1016/0166-8641(94)00093-I |
Reference:
|
[7] Buzyakova R.Z., Tkachuk V.V., Wilson R.G.: A quest for nice kernels of neighbourhood assignments.Comment. Math. Univ. Carolin. 48 4 (2007), 689--697. Zbl 1199.54141, MR 2375169 |
Reference:
|
[8] van Douwen E.K., Lutzer D.: A note on paracompactness in generalized ordered spaces.Proc. Amer. Math. Soc. 125 4 (1997), 1237--1245. Zbl 0885.54023, MR 1396999, 10.1090/S0002-9939-97-03902-6 |
Reference:
|
[9] van Douwen E., Pfeffer W.F.: Some properties of the Sorgenfrey line and other spaces.Pacific J. Math. 81 2 (1979), 371--377. MR 0547605, 10.2140/pjm.1979.81.371 |
Reference:
|
[10] van Douwen E., Wicke H.H.: A real, weird topology on the reals.Houston J. Math. 3 1 (1977), 141--152. Zbl 0345.54036, MR 0433414 |
Reference:
|
[11] Eisworth T.: On $D$-spaces.in Open Problems in Topology, II, ed. Elliott Pearl, Elsevier, Amsterdam, 2007. MR 2367385 |
Reference:
|
[12] Engelking R.: General Topology.Heldermann, Berlin, 1989. Zbl 0684.54001, MR 1039321 |
Reference:
|
[13] Galvin F.: Indeterminacy of point-open games.Bull. Acad. Polon. Sci., Sér. Math. 26 5 (1978), 445--449. Zbl 0392.90101, MR 0493925 |
Reference:
|
[14] Gruenhage G.: A note on $D$-spaces.Topology Appl. 153 (2006), 2229--2240. Zbl 1101.54029, MR 2238727 |
Reference:
|
[15] Lutzer D.: Ordinals and paracompactness in ordered spaces.Proceedings Topo72, General Topology and its Applications, Pittsburgh International Conference, 1972, Lecture Notes in Mathematics 372, Springer, Berlin, 1974. Zbl 0298.54015, MR 0362250 |
Reference:
|
[16] van Mill J., Tkachuk V.V., Wilson R.G.: Classes defined by stars and neighbourhood assignments.Topology Appl. 154 (2007), 2127--2134. Zbl 1131.54022, MR 2324924, 10.1016/j.topol.2006.03.029 |
Reference:
|
[17] Telgársky R.: Spaces defined by topological games.Fund. Math. 88 (1975), 193--223. MR 0380708 |
Reference:
|
[18] Telgársky R.: Spaces defined by topological games II.Fund. Math. 116 (1983), 189--207. MR 0716219 |
Reference:
|
[19] Uspenskij V.V.: The frequency spectrum of function spaces (in Russian).Vestnik. Moskov. Univ. Ser. I Mat. 37 1 (1982), 31--35. |
. |