Previous |  Up |  Next

Article

Title: Addition theorems, $D$-spaces and dually discrete spaces (English)
Author: Alas, Ofelia T.
Author: Tkachuk, Vladimir V.
Author: Wilson, Richard G.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 50
Issue: 1
Year: 2009
Pages: 113-124
Summary lang: English
.
Category: math
.
Summary: A {\it neighbourhood assignment\/} in a space $X$ is a family $\Cal O= \{O_x:x\in X\}$ of open subsets of $X$ such that $x\in O_x$ for any $x\in X$. A set $Y\subseteq X$ is {\it a kernel of $\Cal O$\/} if $\Cal O(Y)=\bigcup\{O_x:x\in Y\}=X$. If every neighbourhood assignment in $X$ has a closed and discrete (respectively, discrete) kernel, then $X$ is said to be a $D$-space (respectively a dually discrete space). In this paper we show among other things that every GO-space is dually discrete, every subparacompact scattered space and every continuous image of a Lindelöf $P$-space is a $D$-space and we prove an addition theorem for metalindelöf spaces which answers a question of Arhangel'skii and Buzyakova. (English)
Keyword: neighbourhood assignment
Keyword: $D$-space
Keyword: dually discrete space
Keyword: discrete kernel
Keyword: scattered space
Keyword: paracompactness
Keyword: GO-space
MSC: 54D20
MSC: 54G99
idZBL: Zbl 1212.54074
idMR: MR2562808
.
Date available: 2009-08-18T12:23:33Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/133419
.
Reference: [1] Alas O.T., Junqueira L., Wilson R.G.: Dually discrete spaces.Topology Appl. 155 (2008), 13 1420--1425. Zbl 1169.54010, MR 2427413, 10.1016/j.topol.2008.04.003
Reference: [2] Alas O.T., Sanchis M., Tkachenko M.G., Tkachuk V.V., Wilson R.G.: Irresolvable and submaximal spaces: homogeneity versus $\sigma$-discreteness and new ZFC examples.Topology Appl. 107 (2000), 259--273. Zbl 0984.54002, MR 1779814
Reference: [3] Alas O.T., Tkachuk V.V., Wilson R.G.: Covering properties and neighbourhood assignments.Topology Proc. 30 1 (2006), 25--38. MR 2280656
Reference: [4] Arhangel'skii A.V.: D-spaces and finite unions.Proc. Amer. Math. Soc. 132 7 (2004), 2163--2170. Zbl 1045.54009, MR 2053991, 10.1090/S0002-9939-04-07336-8
Reference: [5] Arhangel'skii A.V., Buzyakova R.Z.: Addition theorems and $D$-spaces.Comment. Math. Univ. Carolin. 43 (2002), 653--663. Zbl 1090.54017, MR 2045787
Reference: [6] Arhangel'skii A.V., Collins P.J.: On submaximal spaces.Topology Appl. 64 3 (1995), 219--241. MR 1342519, 10.1016/0166-8641(94)00093-I
Reference: [7] Buzyakova R.Z., Tkachuk V.V., Wilson R.G.: A quest for nice kernels of neighbourhood assignments.Comment. Math. Univ. Carolin. 48 4 (2007), 689--697. Zbl 1199.54141, MR 2375169
Reference: [8] van Douwen E.K., Lutzer D.: A note on paracompactness in generalized ordered spaces.Proc. Amer. Math. Soc. 125 4 (1997), 1237--1245. Zbl 0885.54023, MR 1396999, 10.1090/S0002-9939-97-03902-6
Reference: [9] van Douwen E., Pfeffer W.F.: Some properties of the Sorgenfrey line and other spaces.Pacific J. Math. 81 2 (1979), 371--377. MR 0547605, 10.2140/pjm.1979.81.371
Reference: [10] van Douwen E., Wicke H.H.: A real, weird topology on the reals.Houston J. Math. 3 1 (1977), 141--152. Zbl 0345.54036, MR 0433414
Reference: [11] Eisworth T.: On $D$-spaces.in Open Problems in Topology, II, ed. Elliott Pearl, Elsevier, Amsterdam, 2007. MR 2367385
Reference: [12] Engelking R.: General Topology.Heldermann, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [13] Galvin F.: Indeterminacy of point-open games.Bull. Acad. Polon. Sci., Sér. Math. 26 5 (1978), 445--449. Zbl 0392.90101, MR 0493925
Reference: [14] Gruenhage G.: A note on $D$-spaces.Topology Appl. 153 (2006), 2229--2240. Zbl 1101.54029, MR 2238727
Reference: [15] Lutzer D.: Ordinals and paracompactness in ordered spaces.Proceedings Topo72, General Topology and its Applications, Pittsburgh International Conference, 1972, Lecture Notes in Mathematics 372, Springer, Berlin, 1974. Zbl 0298.54015, MR 0362250
Reference: [16] van Mill J., Tkachuk V.V., Wilson R.G.: Classes defined by stars and neighbourhood assignments.Topology Appl. 154 (2007), 2127--2134. Zbl 1131.54022, MR 2324924, 10.1016/j.topol.2006.03.029
Reference: [17] Telgársky R.: Spaces defined by topological games.Fund. Math. 88 (1975), 193--223. MR 0380708
Reference: [18] Telgársky R.: Spaces defined by topological games II.Fund. Math. 116 (1983), 189--207. MR 0716219
Reference: [19] Uspenskij V.V.: The frequency spectrum of function spaces (in Russian).Vestnik. Moskov. Univ. Ser. I Mat. 37 1 (1982), 31--35.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_50-2009-1_10.pdf 251.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo