Previous |  Up |  Next

Article

Title: On $\pi$-metrizable spaces, their continuous images and products (English)
Author: Stover, Derrick
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 50
Issue: 1
Year: 2009
Pages: 153-162
Summary lang: English
.
Category: math
.
Summary: A space $X$ is said to be $\pi$-metrizable if it has a $\sigma$-discrete $\pi$-base. The behavior of $\pi$-metrizable spaces under certain types of mappings is studied. In particular we characterize strongly $d$-separable spaces as those which are the image of a $\pi$-metrizable space under a perfect mapping. Each Tychonoff space can be represented as the image of a $\pi$-metrizable space under an open continuous mapping. A question posed by Arhangel'skii regarding if a $\pi$-metrizable topological group must be metrizable receives a negative answer. (English)
Keyword: $\pi$-metrizable
Keyword: weakly $\pi$-metrizable
Keyword: $\pi$-base
Keyword: $\sigma$-discrete $\pi$-base
Keyword: $\sigma$-disjoint $\pi$-base
Keyword: $d$-separable
MSC: 54B10
MSC: 54C10
MSC: 54D70
idZBL: Zbl 1212.54033
idMR: MR2562812
.
Date available: 2009-08-18T12:24:01Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/133423
.
Reference: [1] Arhangel'skii A.V.: Topological invariants in algebraic environment.Recent Progress in General Topology, II, North-Holland, Amsterdam, 2002, pp. 1--57. Zbl 1030.54026, MR 1969992
Reference: [2] Arhangel'skii A.V.: $d$-separable spaces.Seminar on General Topology, Moscow, 1981, pp. 3--8. MR 0656944
Reference: [3] Davis S.: Topology.McGraw-Hill, New York, 2004. Zbl 1142.20020
Reference: [4] Engelking R.: General Topology.Heldermann, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [5] Fearnley D.: A Moore space with a $\sigma$-discrete $\pi$-base which cannot be densely embedded in any Moore space with the Baire property.Proc. Amer. Math. Soc. 127 (1999), 3095--3100. Zbl 0992.54026, MR 1605960, 10.1090/S0002-9939-99-04876-5
Reference: [6] Isbell J.: Uniform Spaces.American Mathematical Society, Providence, Rhode Island, 1964. Zbl 0124.15601, MR 0170323
Reference: [7] Ponomarev V.: On the absolute of a topological space.Dokl. Akad. Nauk SSSR 149 26--29 (1963). MR 0157355
Reference: [8] White H.E.: First countable spaces that have countable pseudo-bases.Canad. Math. Bull. 21 103--112 (1978). MR 0482615, 10.4153/CMB-1978-016-5
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_50-2009-1_14.pdf 226.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo