Previous |  Up |  Next

Article

Title: A continuous operator extending ultrametrics (English)
Author: Stasyuk, I.
Author: Tymchatyn, E. D.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 50
Issue: 1
Year: 2009
Pages: 141-151
Summary lang: English
.
Category: math
.
Summary: The problem of continuous simultaneous extension of all continuous partial ultrametrics defined on closed subsets of a compact zero-dimensional metric space was recently solved by E.D. Tymchatyn and M. Zarichnyi and improvements to their result were made by I. Stasyuk. In the current paper we extend these results to complete, bounded, zero-dimensional metric spaces and to both continuous and uniformly continuous partial ultrametrics. (English)
Keyword: ultrametric
Keyword: space of partial ultrametrics
Keyword: continuous extension operator
MSC: 54C20
MSC: 54E35
MSC: 54E40
idZBL: Zbl 1212.54091
idMR: MR2562811
.
Date available: 2009-08-18T12:23:54Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/133422
.
Reference: [1] Banakh T.: $AE(0)$--spaces and regular operators extending $($averaging$)$ pseudometrics.Bull. Polish Acad. Sci. Math. 42 (1994), 3 197--206. Zbl 0827.54010, MR 1811849
Reference: [2] Banakh T., Bessaga C.: On linear operators extending $[$pseudo$]$metrics.Bull. Polish Acad. Sci. Math. 48 (2000), 1 35--49. Zbl 0948.54021, MR 1751152
Reference: [3] Banakh T., Brodskiy N., Stasyuk I., Tymchatyn E.D.: On continuous extension of uniformly continuous functions and metrics.submitted to Colloq. Math. MR 2520139
Reference: [4] Banakh T., Tymchatyn E.D., Zarichnyi M.: Extensions of metrics: survey of results.in preparation.
Reference: [5] Bessaga C.: On linear operators and functors extending pseudometrics.Fund. Math. 142 (1993), 2 101--122. Zbl 0847.54033, MR 1211761
Reference: [6] Čoban M.M.: Multivalued mappings and Borel sets.Dokl. Akad. Nauk SSSR 182 (1968), 1175--1178. MR 0236892
Reference: [7] Engelking R., Heath R., Michael E.: Topological well-ordering and continuous selections.Invent. Math. 6 (1968), 150--158. Zbl 0167.20504, MR 0244959, 10.1007/BF01425452
Reference: [8] de Groot J.: Non-archimedean metrics in topology.Proc. Amer. Math. Soc. 7 (1956), 948--953. Zbl 0072.40201, MR 0080905, 10.1090/S0002-9939-1956-0080905-8
Reference: [9] Dugundji J.: An extension of Tietze's theorem.Pacific J. Math. 1 (1951), 353--367. Zbl 0043.38105, MR 0044116, 10.2140/pjm.1951.1.353
Reference: [10] Khrennikov A.Yu., Nilsson M.: $p$-Adic Deterministic and Random Dynamics.Kluwer Academic, Dordrecht-Boston-London, 2004, 270 pp. MR 2105195
Reference: [11] Künzi H.P., Shapiro L.: On simultaneous extension of continuous partial functions.Proc. Amer. Math. Soc. 125 (1997), 1853--1859. MR 1415348, 10.1090/S0002-9939-97-04011-2
Reference: [12] Luukkainen J., Movahedi-Lankarani H.: Minimal bi-Lipschitz embedding dimension of ultrametric spaces.Fund. Math. 144 (1994), 181--193. Zbl 0807.54025, MR 1273695
Reference: [13] van Mill J., Pelant J., Pol R.: Selections that characterize topological completeness.Fund. Math. 149 (1996), 127--141. Zbl 0861.54016, MR 1376668
Reference: [14] Stasyuk I.: Operators of simultaneous extensions partial ultrametrics.Math. Methods and Phys.-Mech. Fields 49 (2006), 2 27--32 (Ukrainian). MR 2259425
Reference: [15] Stasyuk I., Tymchatyn E.D.: A note on uniformly continuous selections of multivalued maps.submitted to Topology Appl.
Reference: [16] Tymchatyn E.D., Zarichnyi M.: On simultaneous linear extensions of partial $($pseudo$)$metrics.Proc. Amer. Math. Soc. 132 (2004), 2799--2807. Zbl 1050.54011, MR 2054807, 10.1090/S0002-9939-04-07413-1
Reference: [17] Tymchatyn E.D., Zarichnyi M.: A note on operators extending partial ultrametrics.Comment. Math. Univ. Carolin. 46 (2005), 3 515--524. Zbl 1121.54045, MR 2174529
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_50-2009-1_13.pdf 225.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo