Title:
|
On the sign of Colombeau functions and applications to conservation laws (English) |
Author:
|
Jelínek, Jiří |
Author:
|
Pražák, Dalibor |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
50 |
Issue:
|
2 |
Year:
|
2009 |
Pages:
|
245-264 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A generalized concept of sign is introduced in the context of Colombeau algebras. It extends the sign of the point-value in the case of sufficiently regular functions. This concept of generalized sign is then used to characterize the entropy condition for discontinuous solutions of scalar conservation laws. (English) |
Keyword:
|
Colombeau algebra |
Keyword:
|
generalized sign |
Keyword:
|
conservation law |
Keyword:
|
entropy condition |
MSC:
|
35L67 |
MSC:
|
46F30 |
idZBL:
|
Zbl 1212.46061 |
idMR:
|
MR2537834 |
. |
Date available:
|
2009-08-18T12:24:54Z |
Last updated:
|
2013-09-22 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/133431 |
. |
Reference:
|
[1] Colombeau J.-F.: Multiplication of distributions.Bull. Amer. Math. Soc. (N.S.) 23 (1990), no. 2, 251--268. Zbl 0819.46026, MR 1028141, 10.1090/S0273-0979-1990-15919-1 |
Reference:
|
[2] Colombeau J.-F.: Elementary introduction to new generalized functions.North-Holland Mathematics Studies 113, Notes on Pure Mathematics 103, North-Holland Publishing Co., Amsterdam, 1985. Zbl 0584.46024, MR 0808961 |
Reference:
|
[3] Dafermos C.M.: Hyperbolic conservation laws in continuum physics.Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 325, Springer, Berlin, 2000. Zbl 1078.35001, MR 1763936 |
Reference:
|
[4] Danilov V.G., Omel'yanov G.A.: Calculation of the singularity dynamics for quadratic nonlinear hyperbolic equations. Example: the Hopf equation.Nonlinear Theory of Generalized Functions (Vienna, 1997), Chapman & Hall/CRC Res. Notes Math. 401, Chapman & Hall/CRC, Boca Raton, FL, 1999, 63--74. Zbl 0932.35144, MR 1699862 |
Reference:
|
[5] DiPerna R.J., Lions P.-L.: Ordinary differential equations, transport theory and Sobolev spaces.Invent. Math. 98 (1989), no. 3, 511--547. Zbl 0696.34049, MR 1022305, 10.1007/BF01393835 |
Reference:
|
[6] Lions P.-L., Perthame B., Tadmor E.: A kinetic formulation of multidimensional scalar conservation laws and related equations.J. Amer. Math. Soc. 7 (1994), no. 1, 169--191. Zbl 0820.35094, MR 1201239, 10.1090/S0894-0347-1994-1201239-3 |
Reference:
|
[7] Lojasiewicz S.: Sur la valeur et la limite d'une distribution en un point.Studia Math. 16 (1957), 1--36. Zbl 0086.09405, MR 0087905 |
Reference:
|
[8] Nozari K., Afrouzi G.A.: Travelling wave solutions to some PDEs of mathematical physics.Int. J. Math. Math. Sci. (2004), no. 21--24, 1105--1120. Zbl 1069.35057, MR 2085053 |
Reference:
|
[9] Oberguggenberger M.: Multiplication of distributions and applications to partial differential equations.Pitman Research Notes in Mathematics Series 259, Longman Scientific & Technical, Harlow, 1992. Zbl 0818.46036, MR 1187755 |
Reference:
|
[10] Perthame B.: Kinetic formulation of conservation laws.Oxford Lecture Series in Mathematics and its Applications 21, Oxford University Press, Oxford, 2002. Zbl 1030.35002, MR 2064166 |
Reference:
|
[11] Rubio J.E.: The global control of shock waves.Nonlinear Theory of Generalized Functions (Vienna, 1997), Chapman & Hall/CRC Res. Notes Math. 401, Chapman & Hall/CRC, Boca Raton, FL, 1999, pp. 355--367. Zbl 0933.35135, MR 1699875 |
Reference:
|
[12] Rudin W.: Functional analysis.McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York, 1973. Zbl 0867.46001, MR 0365062 |
Reference:
|
[13] Schwartz L.: Théorie des distributions.Publications de l'Institut de Mathématique de l'Université de Strasbourg, No. IX--X, Nouvelle édition, entiérement corrigée, refondue et augmentée, Hermann, Paris, 1966. Zbl 0962.46025, MR 0209834 |
Reference:
|
[14] Shelkovich V.M.: New versions of the Colombeau algebras.Math. Nachr. 278 (2005), no. 11, 1318--1340. Zbl 1115.46035, MR 2163299, 10.1002/mana.200310309 |
Reference:
|
[15] Villarreal F.: Colombeau's theory and shock wave solutions for systems of PDEs.Electron. J. Differential Equations 2000, no. 21, 17 pp. Zbl 0966.46022, MR 1744084 |
Reference:
|
[16] Ziemer W.P.: Weakly differentiable functions. Sobolev spaces and functions of bounded variation.Graduate Texts in Mathematics 120, Springer, New York, 1989. Zbl 0692.46022, MR 1014685, 10.1007/978-1-4612-1015-3_5 |
. |