Article
Keywords:
spaces of derivatives; Peano derivatives; Lipschitz function; multiplication operator
Summary:
For subspaces, $X$ and $Y$, of the space, $D$, of all derivatives $M(X,Y)$ denotes the set of all $g\in D$ such that $fg \in Y$ for all $f \in X$. Subspaces of $D$ are defined depending on a parameter $p \in [0,\infty ]$. In Section 6, $M(X,D)$ is determined for each of these subspaces and in Section 7, $M(X,Y)$ is found for $X$ and $Y$ any of these subspaces. In Section 3, $M(X,D)$ is determined for other spaces of functions on $[0,1]$ related to continuity and higher order differentiation.
References:
                        
[1] A. M. Bruckner, J. Mařík, C. E. Weil: 
Some aspects of products of derivatives. Amer. Math. Monthly 99 (1992), 134–145. 
DOI 10.2307/2324182 | 
MR 1144354 
[2] R. J. Fleissner: 
Distant bounded variation and products of derivatives. Fundam. Math. 94 (1977), 1–11. 
MR 0425041 | 
Zbl 0347.26009 
[3] R. J. Fleissner: 
Multiplication and the fundamental theorem of calculus: A survey. Real Anal. Exchange 2 (1976), 7–34. 
MR 0507383 
[5] J. Mařík: 
Transformation and multiplication of derivatives. Classical Real Analysis, Proc. Spec. Sess. AMS, 1982, AMS, Contemporary Mathematics 42, 1985, pp. 119–134. 
MR 0807985 
[6] J. Mařík, C. E. Weil: 
Sums of powers of derivatives. Proc. Amer. Math. Soc. 112, 807–817. 
MR 1042268 
[8] S. Saks: 
Theory of the integral. Dover Publications, 1964. 
MR 0167578