Previous |  Up |  Next


Title: Multipliers of spaces of derivatives (English)
Author: Mařík, Jan
Author: Weil, Clifford E.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 129
Issue: 2
Year: 2004
Pages: 181-217
Summary lang: English
Category: math
Summary: For subspaces, $X$ and $Y$, of the space, $D$, of all derivatives $M(X,Y)$ denotes the set of all $g\in D$ such that $fg \in Y$ for all $f \in X$. Subspaces of $D$ are defined depending on a parameter $p \in [0,\infty ]$. In Section 6, $M(X,D)$ is determined for each of these subspaces and in Section 7, $M(X,Y)$ is found for $X$ and $Y$ any of these subspaces. In Section 3, $M(X,D)$ is determined for other spaces of functions on $[0,1]$ related to continuity and higher order differentiation. (English)
Keyword: spaces of derivatives
Keyword: Peano derivatives
Keyword: Lipschitz function
Keyword: multiplication operator
MSC: 26A21
MSC: 26A24
MSC: 47B37
MSC: 47B38
idZBL: Zbl 1051.26003
idMR: MR2073514
DOI: 10.21136/MB.2004.133900
Date available: 2009-09-24T22:14:13Z
Last updated: 2020-07-29
Stable URL:
Reference: [1] A. M. Bruckner, J. Mařík, C. E. Weil: Some aspects of products of derivatives.Amer. Math. Monthly 99 (1992), 134–145. MR 1144354, 10.2307/2324182
Reference: [2] R. J. Fleissner: Distant bounded variation and products of derivatives.Fundam. Math. 94 (1977), 1–11. Zbl 0347.26009, MR 0425041
Reference: [3] R. J. Fleissner: Multiplication and the fundamental theorem of calculus: A survey.Real Anal. Exchange 2 (1976), 7–34. MR 0507383
Reference: [4] J. Mařík: Multipliers of summable derivatives.Real Anal. Exchange 8 (1982–83), 486–493. MR 0700199, 10.2307/44153420
Reference: [5] J. Mařík: Transformation and multiplication of derivatives.Classical Real Analysis, Proc. Spec. Sess. AMS, 1982, AMS, Contemporary Mathematics 42, 1985, pp. 119–134. MR 0807985
Reference: [6] J. Mařík, C. E. Weil: Sums of powers of derivatives.Proc. Amer. Math. Soc. 112, 807–817. MR 1042268
Reference: [7] W. Wilkocz: Some properties of derivative functions.Fund. Math. 2 (1921), 145–154. 10.4064/fm-2-1-145-154
Reference: [8] S. Saks: Theory of the integral.Dover Publications, 1964. MR 0167578


Files Size Format View
MathBohem_129-2004-2_7.pdf 435.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo