Previous |  Up |  Next

Article

Title: On subalgebra lattices of a finite unary algebra. I. (English)
Author: Pióro, Konrad
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 126
Issue: 1
Year: 2001
Pages: 161-170
Summary lang: English
.
Category: math
.
Summary: One of the main aims of the present and the next part [15] is to show that the theory of graphs (its language and results) can be very useful in algebraic investigations. We characterize, in terms of isomorphisms of some digraphs, all pairs $\langle \mathbf{A},\mathbf{L}\rangle $, where $\mathbf{A}$ is a finite unary algebra and $L$ a finite lattice such that the subalgebra lattice of $\mathbf{A}$ is isomorphic to $\mathbf{L}$. Moreover, we find necessary and sufficient conditions for two arbitrary finite unary algebras to have isomorphic subalgebra lattices. We solve these two problems in the more general case of partial unary algebras. In the next part [15] we will use these results to describe connections between various kinds of lattices of (partial) subalgebras of a finite unary algebra. (English)
Keyword: unary algebra
Keyword: partial algebra
Keyword: subalgebra lattice
Keyword: directed graph
Keyword: finite unary algebra
MSC: 05C20
MSC: 05C40
MSC: 05C90
MSC: 05C99
MSC: 06B15
MSC: 06D05
MSC: 08A30
MSC: 08A55
MSC: 08A60
idZBL: Zbl 0978.08003
idMR: MR1826479
DOI: 10.21136/MB.2001.133915
.
Date available: 2009-09-24T21:48:33Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/133915
.
Reference: [1] M. Barr, C. Wells: Category Theory for Computing Science.Series in Computer Science, Prentice Hall International, London, 1990. MR 1094561
Reference: [2] W. Bartol: Weak subalgebra lattices.Comment. Math. Univ. Carolin. 31 (1990), 405–410. Zbl 0711.08007, MR 1078473
Reference: [3] W. Bartol, F. Rosselló, L. Rudak: Lectures on Algebras, Equations and Partiality.Rosselló F. (ed.), Technical report B-006, Univ. Illes Balears, Dept. Ciencies Mat. Inf., 1992.
Reference: [4] C. Berge: Graphs and Hypergraphs.North-Holland, Amsterdam, 1973. Zbl 0254.05101, MR 0357172
Reference: [5] P. Burmeister: A Model Theoretic Oriented Approach to Partial Algebras.Math. Research Band 32, Akademie Verlag, Berlin, 1986. Zbl 0598.08004, MR 0854861
Reference: [6] T. Evans, B. Ganter: Varieties with modular subalgebra lattices.Bull. Austral. Math. Soc. 28 (1983), 247–254. MR 0729011, 10.1017/S0004972700020918
Reference: [7] P. Grzeszczuk, E. R. Puczyłowski: On Goldie and dual Goldie dimensions.J. Pure Appl. Algebra 31 (1984), 47–54. MR 0738204, 10.1016/0022-4049(84)90075-6
Reference: [8] P. Grzeszczuk, E. R. Puczyłowski: On infinite Goldie dimension of modular lattices and modules.J. Pure Appl. Algebra 35 (1985), 151–155. MR 0775467, 10.1016/0022-4049(85)90037-4
Reference: [9] J. Johnson, R. L. Seifer: A survey of multi-unary algebras.Mimeographed seminar notes, U.C. Berkeley, 1967.
Reference: [10] B. Jónsson: Topics in Universal Algebra.Lecture Notes in Mathemathics 250, Springer-Verlag, 1972. MR 0345895
Reference: [11] E. W. Kiss, M. A. Valeriote: Abelian algebras and the Hamiltonian property.J. Pure Appl. Algebra 87 (1993), 37–49. MR 1222175, 10.1016/0022-4049(93)90067-4
Reference: [12] E. Lukács, P. P. Pálfy: Modularity of the subgroup lattice of a direct square.Arch. Math. 46 (1986), 18–19. MR 0829806, 10.1007/BF01197131
Reference: [13] P. P. Pálfy: Modular subalgebra lattices.Algebra Universalis 27 (1990), 220–229. MR 1037863, 10.1007/BF01182454
Reference: [14] K. Pióro: On some non-obvious connections between graphs and partial unary algebras.Czechoslovak Math. J. 50 (2000), 295–320. MR 1761388, 10.1023/A:1022418818272
Reference: [15] K. Pióro: On subalgebra lattices of a finite unary algebra, Part II.Math. Bohem. 126 (2001), 171–181. MR 1826479
Reference: [16] D. Sachs: The lattice of subalgebras of a Boolean algebra.Canad. J. Math. 14 (1962), 451–460. MR 0137666, 10.4153/CJM-1962-035-1
Reference: [17] J. Shapiro: Finite equational bases for subalgebra distributive varieties.Algebra Universalis 24 (1987), 36–40. MR 0921528, 10.1007/BF01188381
Reference: [18] J. Shapiro: Finite algebras with abelian properties.Algebra Universalis 25 (1988), 334–364. MR 0969156, 10.1007/BF01229981
.

Files

Files Size Format View
MathBohem_126-2001-1_13.pdf 330.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo