Previous |  Up |  Next

Article

Title: Block diagonalization (English)
Author: Koliha, J. J.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 126
Issue: 1
Year: 2001
Pages: 237-246
Summary lang: English
.
Category: math
.
Summary: We study block diagonalization of matrices induced by resolutions of the unit matrix into the sum of idempotent matrices. We show that the block diagonal matrices have disjoint spectra if and only if each idempotent matrix in the inducing resolution double commutes with the given matrix. Applications include a new characterization of an eigenprojection and of the Drazin inverse of a given matrix. (English)
Keyword: eigenprojection
Keyword: resolutions of the unit matrix
Keyword: block diagonalization
Keyword: Drazin inverse
MSC: 15A09
MSC: 15A18
MSC: 15A21
MSC: 15A27
idZBL: Zbl 0982.15010
idMR: MR1826486
DOI: 10.21136/MB.2001.133928
.
Date available: 2009-09-24T21:49:39Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/133928
.
Reference: [1] S. L. Campbell, C. D. Meyer: Generalized Inverses of Linear Transformations.Dover (reprint), New York, 1991. MR 1105324
Reference: [2] R. E. Harte: Spectral projections.Irish Math. Soc. Newsletter 11 (1984), 10–15. Zbl 0556.47001, MR 0762003
Reference: [3] J. J. Koliha, I. Straškraba: Power bounded and exponentially bounded matrices.Appl. Math. 44 (1999), 289–308. MR 1698770, 10.1023/A:1023032629988
Reference: [4] P. Lagerstrom: A proof of a theorem on commutative matrices.Bull. Amer. Math. Soc. 51 (1945), 535–536. Zbl 0060.03506, MR 0013120, 10.1090/S0002-9904-1945-08386-4
Reference: [5] P. Lancaster: Theory of Matrices.Academic Press New York, 1969. Zbl 0186.05301, MR 0245579
Reference: [6] I. Marek, K. Žitný: Matrix Analysis for Applied Sciences.vol. 1; 2, Teubner-Texte zur Mathematik 60; 84, Teubner, Leipzig, 1983, 1986. MR 0731071
Reference: [7] J. W. Robbin: Matrix Algebra Using MINImal MATlab.A. K. Peters, Wellesley, 1995. Zbl 0817.15001, MR 1311706
Reference: [8] U. G. Rothblum: A representation of the Drazin inverse and characterizations of the index.SIAM J. Appl. Math. 31 (1976), 646–648. Zbl 0355.15008, MR 0422303, 10.1137/0131057
Reference: [9] U. G. Rothblum: Resolvent expansions of matrices and applications.Linear Algebra Appl. 38 (1981), 33–49. Zbl 0468.15002, MR 0636023
Reference: [10] D. A. Suprunenko, R. I. Tyshkevich: Commutative Matrices.Academic Press, New York, 1968.
Reference: [11] J. H. M. Wedderburn: Lectures on Matrices.AMS Colloq. Publ. 17, Amer. Math. Soc., Providence, 1934. Zbl 0010.09904, MR 0168568
.

Files

Files Size Format View
MathBohem_126-2001-1_20.pdf 330.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo