Previous |  Up |  Next

Article

Keywords:
eigenprojection; resolutions of the unit matrix; block diagonalization
Summary:
We study block diagonalization of matrices induced by resolutions of the unit matrix into the sum of idempotent matrices. We show that the block diagonal matrices have disjoint spectra if and only if each idempotent matrix in the inducing resolution double commutes with the given matrix. Applications include a new characterization of an eigenprojection and of the Drazin inverse of a given matrix.
References:
[1] S. L. Campbell, C. D. Meyer: Generalized Inverses of Linear Transformations. Dover (reprint), New York, 1991. MR 1105324
[2] R. E. Harte: Spectral projections. Irish Math. Soc. Newsletter 11 (1984), 10–15. MR 0762003 | Zbl 0556.47001
[3] J. J. Koliha, I. Straškraba: Power bounded and exponentially bounded matrices. Appl. Math. 44 (1999), 289–308. MR 1698770
[4] P. Lagerstrom: A proof of a theorem on commutative matrices. Bull. Amer. Math. Soc. 51 (1945), 535–536. MR 0013120 | Zbl 0060.03506
[5] P. Lancaster: Theory of Matrices. Academic Press New York, 1969. MR 0245579 | Zbl 0186.05301
[6] I. Marek, K. Žitný: Matrix Analysis for Applied Sciences. vol. 1; 2, Teubner-Texte zur Mathematik 60; 84, Teubner, Leipzig, 1983, 1986. MR 0731071
[7] J. W. Robbin: Matrix Algebra Using MINImal MATlab. A. K. Peters, Wellesley, 1995. MR 1311706 | Zbl 0817.15001
[8] U. G. Rothblum: A representation of the Drazin inverse and characterizations of the index. SIAM J. Appl. Math. 31 (1976), 646–648. MR 0422303 | Zbl 0355.15008
[9] U. G. Rothblum: Resolvent expansions of matrices and applications. Linear Algebra Appl. 38 (1981), 33–49. MR 0636023 | Zbl 0468.15002
[10] D. A. Suprunenko, R. I. Tyshkevich: Commutative Matrices. Academic Press, New York, 1968.
[11] J. H. M. Wedderburn: Lectures on Matrices. AMS Colloq. Publ. 17, Amer. Math. Soc., Providence, 1934. MR 0168568 | Zbl 0010.09904
Partner of
EuDML logo