Previous |  Up |  Next

Article

Title: Order convergence of vector measures on topological spaces (English)
Author: Khurana, Surjit Singh
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 133
Issue: 1
Year: 2008
Pages: 19-27
Summary lang: English
.
Category: math
.
Summary: Let $X$ be a completely regular Hausdorff space, $E$ a boundedly complete vector lattice, $C_{b}(X)$ the space of all, bounded, real-valued continuous functions on $X$, $\mathcal{F}$ the algebra generated by the zero-sets of $X$, and $\mu \: C_{b}(X) \rightarrow E$ a positive linear map. First we give a new proof that $\mu $ extends to a unique, finitely additive measure $ \mu \: \mathcal{F} \rightarrow E^{+}$ such that $\nu $ is inner regular by zero-sets and outer regular by cozero sets. Then some order-convergence theorems about nets of $E^{+}$-valued finitely additive measures on $\mathcal{F}$ are proved, which extend some known results. Also, under certain conditions, the well-known Alexandrov’s theorem about the convergent sequences of $\sigma $-additive measures is extended to the case of order convergence. (English)
Keyword: order convergence
Keyword: tight and $\tau $-smooth lattice-valued vector measures
Keyword: measure representation of positive linear operators
Keyword: Alexandrov’s theorem
MSC: 28A33
MSC: 28B05
MSC: 28B15
MSC: 28C05
MSC: 28C15
MSC: 46B42
MSC: 46G10
MSC: 47B65
idZBL: Zbl 1199.28008
idMR: MR2400148
DOI: 10.21136/MB.2008.133944
.
Date available: 2009-09-24T22:34:00Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/133944
.
Reference: [1] Aliprantis, C. D., Burkinshaw, O.: Positive Operators.Academic Press, 1985. MR 0809372
Reference: [2] Diestel, J., Uhl, J. J.: Vector Measures.Amer. Math. Soc. Surveys 15, Amer. Math. Soc., 1977. MR 0453964
Reference: [3] Kawabe, Jun: The Portmanteau theorem for Dedekind complete Riesz space-valued measures.Nonlinear Analysis and Convex Analysis, Yokohama Publ., Yokohama, 2004, pp. 149–158. Zbl 1076.28004, MR 2144038
Reference: [4] Kawabe, Jun: Uniformity for weak order convergence of Riesz space-valued measures.Bull. Austral. Math. Soc. 71 (2005), 265–274. MR 2133410, 10.1017/S0004972700038235
Reference: [5] Khurana, Surjit Singh: Lattice-valued Borel measures.Rocky Mt. J. Math. 6 (1976), 377–382. MR 0399409, 10.1216/RMJ-1976-6-2-377
Reference: [6] Khurana, Surjit Singh: Lattice-valued Borel measures II.Trans. Amer. Math. Soc. 235 (1978), 205–211. Zbl 0325.28012, MR 0460590, 10.1090/S0002-9947-1978-0460590-2
Reference: [7] Khurana, Surjit Singh: Topologies on spaces of continuous vector-valued functions.Trans Amer. Math. Soc. 241 (1978), 195–211. MR 0492297, 10.1090/S0002-9947-1978-0492297-X
Reference: [8] Khurana, Surjit Singh: A vector form of Alexanderov’s theorem.Math. Nachr. 135 (1988), 73–77. MR 0944218, 10.1002/mana.19881350107
Reference: [9] Lipecki, Z.: Riesz representation theorems for positive operators.Math. Nachr. 131 (1987), 351–356. MR 0908823, 10.1002/mana.19871310130
Reference: [10] Schaeffer, H. H.: Topological Vector Spaces.Springer, 1980.
Reference: [11] Schaeffer, H. H.: Banach Lattices and Positive Operators.Springer, 1974.
Reference: [12] Wheeler, R. F.: Survey of Baire measures and strict topologies.Expo. Math. 2 (1983), 97–190. Zbl 0522.28009, MR 0710569
Reference: [13] Varadarajan, V. S.: Measures on topological spaces.Amer. Math. Soc. Transl. 48 (1965), 161–220. 10.1090/trans2/048/10
Reference: [14] Wright, J. D. M.: Stone-algebra-valued measures and integrals.Proc. Lond. Math. Soc. 19 (1969), 107–122. Zbl 0186.46504, MR 0240276, 10.1112/plms/s3-19.1.107
Reference: [15] Wright, J. D. M.: Vector lattice measures on locally compact spaces.Math. Z. 120 (1971), 193–203. Zbl 0198.47803, MR 0293373, 10.1007/BF01117493
Reference: [16] Wright, J. D. M.: The measure extension problem for vector lattices.Ann. Inst. Fourier (Grenoble) 21 (1971), 65–85. Zbl 0215.48101, MR 0330411, 10.5802/aif.393
Reference: [17] Wright, J. D. M.: Measures with values in partially ordered vector spaces.Proc. Lond. Math. Soc. 25 (1972), 675–688. MR 0344413, 10.1112/plms/s3-25.4.675
Reference: [18] Wright, J. D. M.: An algebraic characterization of vector lattices with Borel regularity property.J. Lond. Math. Soc. 7 (1973), 277–285. MR 0333116, 10.1112/jlms/s2-7.2.277
.

Files

Files Size Format View
MathBohem_133-2008-1_3.pdf 269.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo