Previous |  Up |  Next

Article

Title: On van Douwen spaces and retracts of $\beta {\mathbb{N}}$ (English)
Author: Dow, Alan
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 132
Issue: 4
Year: 2007
Pages: 345-368
Summary lang: English
.
Category: math
.
Summary: Eric van Douwen produced in 1993 a maximal crowded extremally disconnected regular space and showed that its Stone-Čech compactification is an at most two-to-one image of $\beta {\mathbb{N}}$. We prove that there are non-homeomorphic such images. We also develop some related properties of spaces which are absolute retracts of $\beta {\mathbb{N}}$ expanding on earlier work of Balcar and Błaszczyk (1990) and Simon (1987). (English)
Keyword: $\beta \mathbb{N}$
Keyword: retracts
Keyword: two to one map
Keyword: Stone-Čech compactification
MSC: 54A25
MSC: 54A35
MSC: 54C15
MSC: 54D35
idZBL: Zbl 1174.54003
idMR: MR2365321
DOI: 10.21136/MB.2007.133962
.
Date available: 2009-09-24T22:32:37Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/133962
.
Reference: [1] A. Bella, A. Błaszczyk, A. Szymański: On absolute retracts of $\omega ^\ast $.Fund. Math. 145 (1994), 1–13. MR 1295157, 10.4064/fm-145-1-1-13
Reference: [2] B. Balcar, A. Błaszczyk: On minimal dynamical systems on Boolean algebras.Comment. Math. Univ. Carolin. 31 (1990), 7–11. MR 1056164
Reference: [3] Eric K. van Douwen: Applications of maximal topologies.Topology Appl. 51 (1993), 125–139. MR 1229708, 10.1016/0166-8641(93)90145-4
Reference: [4] A. Dow, A. V. Gubbi, A. Szymański: Rigid Stone spaces within ${\mathrm ZFC}$.Proc. Amer. Math. Soc. 102 (1988), 745–748. MR 0929014
Reference: [5] Alan Dow: $\beta {\mathbb{N}}$.The work of Mary Ellen Rudin (Madison, WI, 1991), Ann. New York Acad. Sci., vol. 705, New York Acad. Sci., New York, 1993, pp. 47–66. MR 1277880
Reference: [6] A. Dow, J. van Mill: On $n$-to-one continuous images of $\beta {\mathbb{N}}$.Preprint 2005. MR 2361681
Reference: [7] Lutz Heindorf, Leonid B. Shapiro: Nearly projective Boolean algebras.Lecture Notes Math., vol. 1596, Springer, Berlin, 1994. With an appendix by Sakaé Fuchino. MR 1329090, 10.1007/BFb0094103
Reference: [8] Neil Hindman, Dona Strauss: Recent progress in the topological theory of semigroups and the algebra of $\beta S$.Recent progress in general topology, II, North-Holland, Amsterdam, 2002, pp. 227–251. MR 1970000
Reference: [9] S. Koppelberg: Characterizations of Cohen algebras.Papers on General Topology and Applications (Madison, WI, 1991), Ann. New York Acad. Sci., vol. 704, New York Acad. Sci., New York, 1993, pp. 222–237. Zbl 0830.06006, MR 1277859
Reference: [10] R. Levy: The weight of certain images of $\omega ^{*}$.Topology Appl. 153 (2006), 2272–2277. Zbl 1099.54016, MR 2238730, 10.1016/j.topol.2004.06.015
Reference: [11] Jan van Mill: An Introduction to $\beta \omega $.Handbook of Set-Theoretic Topology, K. Kunen, J. E. Vaughan (eds.), Elsevier Science Publishers BV, North-Holland, Amsterdam, 1984, pp. 503–567. MR 0776630
Reference: [12] L. B. Shapiro: On spaces that are coabsolute with dyadic compacta.Dokl. Akad. Nauk SSSR 293 (1987), 1077–1081. MR 0890202
Reference: [13] P. Simon: A closed separable subspace of $\beta {\mathbb{N}}$ which is not a retract.Trans. Amer. Math. Soc. 299 (1987), 641–655. MR 0869226
Reference: [14] A. Szymański: Some applications of tiny sequences.Proceedings of the 11th Winter School on Abstract Analysis (Železná Ruda, 1983), Suppl. 3, 1984, pp. 321–328. MR 0744396
Reference: [15] M. Talagrand: Non existence de relèvement pour certaines mesures finiement additives et retractés de $\beta {\mathbb{N}}$.Math. Ann. 256 (1981), 63–66. MR 0620123, 10.1007/BF01450944
Reference: [16] Jerry E. Vaughan: Two spaces homeomorphic to ${\mathrm Seq}(p)$.Comment. Math. Univ. Carolin. 42 (2001), 209–218. MR 1825385
.

Files

Files Size Format View
MathBohem_132-2007-4_2.pdf 413.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo