Previous |  Up |  Next

Article

Title: On ideals of lattice ordered monoids (English)
Author: Jasem, Milan
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 132
Issue: 4
Year: 2007
Pages: 369-387
Summary lang: English
.
Category: math
.
Summary: In the paper the notion of an ideal of a lattice ordered monoid $A$ is introduced and relations between ideals of $A$ and congruence relations on $A$ are investigated. Further, it is shown that the set of all ideals of a soft lattice ordered monoid or a negatively ordered monoid partially ordered by inclusion is an algebraic Brouwerian lattice. (English)
Keyword: lattice ordered monoid
Keyword: ideal
Keyword: normal ideal
Keyword: congruence relation
Keyword: dually residuated lattice ordered monoid
MSC: 06F05
idZBL: Zbl 1174.06328
idMR: MR2365322
DOI: 10.21136/MB.2007.133965
.
Date available: 2009-09-24T22:32:45Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/133965
.
Reference: [1] G. Birkhoff: Lattice Theory.Third edition, Amer. Math. Soc., Providence, 1967. Zbl 0153.02501, MR 0227053
Reference: [2] A. Dvurečenskij: Pseudo MV-algebras are intervals in l-groups.J. Austral. Math. Soc. 72 (2002), 427–445. MR 1902211, 10.1017/S1446788700036806
Reference: [3] G. Georgescu, A. Iorgulescu: Pseudo MV-algebras.Mult.-Valued Log. 6 (2001), 95–135. MR 1817439
Reference: [4] G. Grätzer: General Lattice Theory.Akademie-Verlag, Berlin, 1978. MR 0504338
Reference: [5] M. Hansen: Minimal prime ideals in autometrized algebras.Czech. Math. J. 44 (1994), 81–90. Zbl 0814.06011, MR 1257938
Reference: [6] M. Jasem: On lattice-ordered monoids.Discuss. Math. Gen. Algebra Appl. 23 (2003), 101–114. Zbl 1072.06010, MR 2070376, 10.7151/dmgaa.1066
Reference: [7] M. Jasem: On polars and direct decompositions of lattice ordered monoids.Contributions to General Algebra 16, Verlag Johannes Heyn, Klagenfurt, 2005, pp. 115–131. Zbl 1078.06008, MR 2166952
Reference: [8] T. Kovář: A General Theory of Dually Residuated Lattice Ordered Monoids.Doctoral Thesis, Palacký Univ., Olomouc, 1996.
Reference: [9] J. Kühr: Dually Residuated Lattice Ordered Monoids.Doctoral Thesis, Palacký Univ., Olomouc, 2003. Zbl 1066.06008, MR 2070377
Reference: [10] J. Kühr: Ideals of non-commutative DRl-monoids.Czech. Math. J. 55 (2005), 97–111. MR 2121658, 10.1007/s10587-005-0006-0
Reference: [11] J. Kühr: Prime ideals and polars in DRl-monoids and pseudo BL-algebras.Math. Slovaca 53 (2003), 233–246. MR 2025020
Reference: [12] J. Rachůnek: Prime ideals in autometrized algebras.Czech. Math. J. 37 (1987), 65–69.
Reference: [13] K. L. M. Swamy: Dually residuated lattice ordered semigroups.Math. Ann. 159 (1965), 105–114. Zbl 0138.02104, MR 0183797, 10.1007/BF01360284
Reference: [14] D. Šalounová: Lex-ideals of DRl-monoids and GMV-algebras.Math. Slovaca 53 (2003), 321–330. MR 2025465
.

Files

Files Size Format View
MathBohem_132-2007-4_3.pdf 318.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo