Previous |  Up |  Next

Article

Title: On systems of congruences on principal filters of orthomodular implication algebras (English)
Author: Halaš, Radomír
Author: Plojhar, Luboš
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 132
Issue: 4
Year: 2007
Pages: 423-435
Summary lang: English
.
Category: math
.
Summary: Orthomodular implication algebras (with or without compatibility condition) are a natural generalization of Abbott’s implication algebras, an implication reduct of the classical propositional logic. In the paper deductive systems (= congruence kernels) of such algebras are described by means of their restrictions to principal filters having the structure of orthomodular lattices. (English)
Keyword: orthoimplication algebra
Keyword: orthomodular lattice
Keyword: $p$-filter
MSC: 03B60
MSC: 03G25
MSC: 06B10
MSC: 06C15
idZBL: Zbl 1174.03030
idMR: MR2365325
DOI: 10.21136/MB.2007.133966
.
Date available: 2009-09-24T22:33:13Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/133966
.
Reference: [1] Abbott, J. C.: Semi-boolean algebra.Mat. Vestnik 4 (1967), 177–198. Zbl 0153.02704, MR 0239957
Reference: [2] Abbott, J. C.: Orthoimplication algebras.Stud. Log. 35 (1976), 173–177. Zbl 0331.02036, MR 0441794, 10.1007/BF02120879
Reference: [3] Beran, L.: Orthomodular Lattices—Algebraic Approach.D. Reidel, Dordrecht, 1985. Zbl 0558.06008, MR 0784029
Reference: [4] Burmeister, P., Maczyński, M.: Orthomodular (partial) algebras and their representations.Demonstr. Math. 27 (1994), 701–722. MR 1319415
Reference: [5] Chajda I., Halaš, R., Kühr, J.: Implication in MV-algebras.Algebra Univers. 52 (2004), 377–382. MR 2120523
Reference: [6] Chajda I., Halaš, R., Kühr, J.: Distributive lattices with sectionally antitone involutions.Acta Sci. (Szeged) 71 (2005), 19–33. MR 2160352
Reference: [7] Chajda, I., Halaš, R., Länger, H.: Orthomodular implication algebras.Int. J. Theor. Phys. 40 (2001), 1875–1884. MR 1860644, 10.1023/A:1011933018776
Reference: [8] Chajda, I., Halaš, R., Länger, H.: Simple axioms for orthomodular implication algebras.Int. J. Theor. Phys. 40 (2004), 911–914. MR 2106354, 10.1023/B:IJTP.0000048587.50827.93
Reference: [9] Halaš, R.: Ideals and D-systems in Orthoimplication algebras.J. Mult.-Val. Log. Soft Comput. 11 (2005), 309–316. Zbl 1078.03050, MR 2160472
Reference: [10] Kalmbach, G.: Orhomodular Lattices.Academic Press, London, 1983. MR 0716496
.

Files

Files Size Format View
MathBohem_132-2007-4_6.pdf 262.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo