Previous |  Up |  Next

Article

Title: Directoids with sectionally antitone involutions and skew MV-algebras (English)
Author: Chajda, I.
Author: Kolařík, M.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 132
Issue: 4
Year: 2007
Pages: 407-422
Summary lang: English
.
Category: math
.
Summary: It is well-known that every MV-algebra is a distributive lattice with respect to the induced order. Replacing this lattice by the so-called directoid (introduced by J. Ježek and R. Quackenbush) we obtain a weaker structure, the so-called skew MV-algebra. The paper is devoted to the axiomatization of skew MV-algebras, their properties and a description of the induced implication algebras. (English)
Keyword: directoid
Keyword: antitone involution
Keyword: sectionally switching mapping
Keyword: MV-algebra
Keyword: NMV-algebra
Keyword: WMV-algebra
Keyword: skew MV-algebra
Keyword: implication algebra
MSC: 03G25
MSC: 06A12
MSC: 06D35
MSC: 08A05
idZBL: Zbl 1174.06314
idMR: MR2365324
DOI: 10.21136/MB.2007.133967
.
Date available: 2009-09-24T22:33:03Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/133967
.
Reference: [1] Abbott J. C.: Semi-boolean algebra.Matem. Vestnik 4 (1967), 177–198. Zbl 0153.02704, MR 0239957
Reference: [2] Chajda I., Eigenthaler G., Länger H.: Congruence Classes in Universal Algebra.Heldermann, Lemgo (Germany), 2003. MR 1985832
Reference: [3] Chajda I., Halaš R., Kühr J.: Distributive lattices with sectionally antitone involutions.Acta Sci. Math. (Szeged) 71 (2005), 19–33. MR 2160352
Reference: [4] Chajda I., Halaš R., Kühr J.: Implication in MV-algebras.Algebra Universalis 52 (2004), 377–382. MR 2120523, 10.1007/s00012-004-1862-4
Reference: [5] Chajda I., Kühr J.: A non-associative generalization of MV-algebras.(to appear). MR 2357826
Reference: [6] Chang C. C.: Algebraic analyses of many valued logics.Trans. Amer. Math. Soc. 88 (1958), 467–490. MR 0094302, 10.1090/S0002-9947-1958-0094302-9
Reference: [7] Cignoli R. L. O., D’Ottaviano I. M. L., Mundici D.: Algebraic Foundations of Many- Valued Reasoning.Kluwer Acad. Publ., Dordrecht, 2000. MR 1786097
Reference: [8] Georgescu G., Iorgelescu A.: Pseudo MV-algebras.Multiple Valued Log. 6 (2001), 95–135. MR 1817439
Reference: [9] Halaš R., Plojhar L.: Implication reducts of weak MV-algebras.Contributions to General Algebra 18, Verlag Heyn, 2007, to appear. MR 2399238
Reference: [10] Halaš R., Plojhar L.: Weak MV-algebras.(to appear). MR 2399238
Reference: [11] Ježek J., Quackenbush R.: Directoids: algebraic models of up-directed sets.Algebra Universalis 27 (1990), 49–69. MR 1025835, 10.1007/BF01190253
Reference: [12] Rachůnek J.: A non-commutative generalization of MV-algebras.Czech. Math. J. 52 (2002), 255–273. Zbl 1012.06012, MR 1905434, 10.1023/A:1021766309509
.

Files

Files Size Format View
MathBohem_132-2007-4_5.pdf 288.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo