Previous |  Up |  Next

Article

Title: Infinite-dimensional complex projective spaces and complete intersections (English)
Author: Ballico, E.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 131
Issue: 4
Year: 2006
Pages: 419-425
Summary lang: English
.
Category: math
.
Summary: Let $V$ be an infinite-dimensional complex Banach space and $X \subset {\mathbf {P}}(V)$ a closed analytic subset with finite codimension. We give a condition on $X$ which implies that $X$ is a complete intersection. We conjecture that the result should be true for more general topological vector spaces. (English)
Keyword: infinite-dimensional complex projective space
Keyword: infinite-dimensional complex manifold
Keyword: complete intersection
Keyword: complex Banach space
Keyword: complex Banach manifold
MSC: 32K05
MSC: 58B20
idZBL: Zbl 1109.32015
idMR: MR2273932
DOI: 10.21136/MB.2006.133969
.
Date available: 2009-09-24T22:28:03Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/133969
.
Reference: [1] B. Kotzev: Vanishing of the first cohomology group of line bundles on complete intersections in infinite-dimensional projective space.Ph.D. thesis, University of Purdue, 2001. MR 2704133
Reference: [2] L. Lempert: The Dolbeaut complex in infinite dimension.J. Amer. Math. Soc. 11 (1998), 485–520. MR 1603858, 10.1090/S0894-0347-98-00266-5
Reference: [3] A. N. Tyurin: Vector bundles of finite rank over infinite varieties.Math. USSR Izvestija 10 (1976), 1187–1204. 10.1070/IM1976v010n06ABEH001832
.

Files

Files Size Format View
MathBohem_131-2006-4_7.pdf 322.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo