Previous |  Up |  Next

Article

Title: Observability of nonlinear systems (English)
Author: Knobloch, H. W.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 131
Issue: 4
Year: 2006
Pages: 411-418
Summary lang: English
.
Category: math
.
Summary: Observability of a general nonlinear system—given in terms of an ODE $\dot{x}=f(x)$ and an output map $y=c(x)$—is defined as in linear system theory (i.e. if $f(x)=Ax$ and $c(x)=Cx$). In contrast to standard treatment of the subject we present a criterion for observability which is not a generalization of a known linear test. It is obtained by evaluation of “approximate first integrals”. This concept is borrowed from nonlinear control theory where it appears under the label “Dissipation Inequality” and serves as a link with Hamilton-Jacobi theory. (English)
Keyword: ordinary differential equations
Keyword: observability
MSC: 34A34
MSC: 34C14
MSC: 93B07
idZBL: Zbl 1109.93013
idMR: MR2273931
DOI: 10.21136/MB.2006.133974
.
Date available: 2009-09-24T22:27:52Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/133974
.
Reference: [1] Knobloch, H. W.: Disturbance Attenuation in Control Systems, Part II: Proofs and Applications.Contributions to Nonlinear Control Theory, F. Allgöwer, H. W. Knobloch, Shaker Verlag, Herzogenrath, 2006, to appear. MR 2176539
Reference: [2] D. Flockerzi: Dissipation Inequalities and Nonlinear $H_\infty $-Theory.Contributions to Nonlinear Control Theory, F. Allgöwer, H. W. Knobloch, Shaker Verlag, Herzogenrath, 2006, to appear.
.

Files

Files Size Format View
MathBohem_131-2006-4_6.pdf 286.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo